Synonyms: 
WB-57
WB57
Associated content: 

Charged-coupled device Actinic Flux Spectroradiometers

The Charged-coupled device Actinic Flux Spectroradiometers (CAFS) instruments measure in situ down- and up-welling radiation and combine to provide 4 pi steradian actinic flux density spectra from 280 to 650 nm. The sampling resolution is ~0.8 nm with a full width at half maximum (FWHM) of 1.7 nm at 297 nm. From the measured flux, photolysis frequencies are calculated for ~40 important atmospheric trace gases including O3, NO2, HCHO, HONO and NO3 using a modified version of the NCAR Tropospheric Ultraviolet and Visible (TUV) radiative transfer model. The absolute spectral sensitivity of the instruments is determined in the laboratory with 1000 W NIST-traceable tungsten-halogen lamps with a wavelength dependent uncertainty of 3–5%. During deployments, spectral sensitivity is assessed with secondary calibration lamps while wavelength assignment is tracked with Hg line sources and comparisons to spectral features in the extraterrestrial flux. The optical collectors are characterized for angular and azimuthal response and the effective planar receptor distance. CAFS have an excellent legacy of performance on the NASA DC-8 and WB-57 platforms during atmospheric chemistry and satellite validation mission. These include AVE Houston 2004 and 2005, PAVE, CR-AVE, TC4, ARCTAS, DC3, SEAC4RS, KORUS-AQ, ATom and FIREX-AQ. For FIREX-AQ, upgraded electronics and cooling reduced noise and allowed for a decrease to 1 Hz acquisition.

Instrument Type: 
Point(s) of Contact: 

Cosmic Dust Collectors

Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Laser Isotope Spectrometer

Isotopic CO2 measurements have been identified as an important component of NASA's Earth Science Enterprise's Carbon Cycle Initiative as part of its program in global climate change. The isotopic composition of atmospheric CO2, and especially its 13CO2/ 12CO2 ratio, is an established tool for understanding the details of the global carbon cycle, since this ratio can distinguish between oceanic and terrestrial biospheric sinks of CO2.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Aircraft Laser Infrared Absorption Spectrometer

ALIAS (Aircraft Laser Infrared Absorption Spectrometer) measures total water, total water isotopes, carbon monoxide, and carbon dioxide isotope ratios. No other instrument provides real-time measurements of carbon dioxide isotope ratios which are clear identifiers of atmospheric transport (18O/17O/16O for stratospheric intrusion, 13C/12C for anthropogenic signals). ALIAS easily adapts to changing mission priorities and can be configured to measure HCl, CH4, SO2, and N2O by simply replacing a semiconductor laser. These measurements contribute to Atmospheric Composition Focus Area research by providing key data on how convective processes affect stratospheric composition, the development of cirrus particles and their affect on Earth's radiative balance, and health of the ozone layer through measurement of chlorine partitioning.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Compact Atmospheric Mapper

Two spectrographs + HD video camera

Air Quality (AQ) 304:520 nm 0.8 nm resolution (NO2, O3, UV absorbing aerosols, SO2, HCHO)

Ocean Color (OC) 460:900 nm 1.5 nm resolution

Video camera (2592x1936 pixels) –3 pixel FWHM

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - WB-57 - JSC