Synonyms: 
809
ER-2 809
Associated content: 
Sub-categories: 

Chemical Ionization Mass Spectrometer

The single mass analyzer CIMS (S-CIMS) was developed for use on NASA’s ER-2 aircraft. Its first measurements were made in 2000 (SOLVE). Subsequently, it has flown on the NASA DC-8 aircraft for INTEX-NA, DICE, TC4, and ARCTAS, as well as on the NCAR C-130 during MILAGRO/INTEX-B. HNO3 is measured by selective ion chemical ionization via the fluoride transfer reaction: CF3O- + HNO3 → HF • NO3- + CF2O In addition to its fast reaction rate with HNO3, CF3O- can be used to measure additional acids and nitrates as well as SO2 [Amelynck et al., 2000; Crounse et al., 2006; Huey et al., 1996]. We have further identified CF3O- chemistry as useful for the measurement of less acidic species via clustering reactions [Crounse et al., 2006; Paulot et al., 2009a; Paulot et al., 2009b; St. Clair et al., 2010]: CF3O- + HX → CF3O- • HX where, e.g., HX = HCN, H2O2, CH3OOH, CH3C(O)OOH (PAA) The mass analyzer of the S-CIMS instrument has recently been upgraded from a quadrupole to a time-of-flight (ToF) analyzer. The ToF admits the sample ion beam to the ion extractor, where a pulse of high voltage orthogonally deflects and accelerates the ions into the reflectron, which in turn redirects the ions toward the multichannel plate detector. Ions in the ToF follow a V-shaped, 43 cm path from extractor to detector, separating by mass as the smaller ions are accelerated to greater velocities by the high voltage pulse. The detector collects the ions as a function of time following each extractor pulse. The rapid-scan collection of the ToF guarantees a high temporal resolution (1 Hz or faster) and simultaneous data products from the S-CIMS instrument for all mass channels [Drewnick et al., 2005]. We have flown a tandem CIMS (TCIMS) instrument in addition to the SCIMS since INTEX-B (2006). The T-CIMS provides parent-daughter mass analysis, enabling measurement of compounds precluded from quantification by the S-CIMS due to mass interferences (e.g. MHP) or the presence of isobaric compounds (e.g. isoprene oxidation products) [Paulot et al., 2009b; St. Clair et al., 2010]. Calibrations of both CIMS instruments for HNO3 and organic acids are performed in flight using isotopically-labeled reagents evolved from a thermally-stabilized permeation tube oven [Washenfelder et al., 2003]. By using an isotopically labeled standard, the product ion signals are distinct from the natural analyte and calibration can be performed at any time without adversely affecting the ambient measurement. We also fly calibration standards for H2O2 (evolved from urea-hydrogen peroxide) and MHP (from a diffusion vial).

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Wing Tip Air Particulate Sampler

The APS is a passive sensor designed to gather high altitude dust particles for laboratory research. An APS paddle is deployed from a wingtip pod into stratosphere once the ER-2 has reached cruising altitude, and is retracted before descent. Both wire impactor and oil-film paddles are used. After approximately 40 hours of exposure, the sealed units are returned to the investigator for examination by an electron microscope. The returned particles can be the by-products of meteor decomposition in the upper atmosphere, or the products of massive volcanic eruptions.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Multi-angle Imaging SpectroRadiometer

The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR) is an airborne instrument for obtaining multi-angle imagery similar to that of the satellite-borne Multi-angle Imaging SpectroRadiometer (MISR) instrument, which is designed to contribute to studies of the Earth's ecology and climate. AirMISR flies on the NASA ER-2 aircraft. The Jet Propulsion Laboratory in Pasadena, California built the instrument for NASA.

Unlike the spaceborne MISR instrument, which has nine cameras oriented at various angles, AirMISR utilizes a single camera in a pivoting gimbal mount. A data run by the ER-2 aircraft is divided into nine segments, each with the camera positioned to a MISR look angle. The gimbal rotates between successive segments, such that each segment acquires data over the same area on the ground as the previous segment. This process is repeated until all nine angles of the target area are collected. The swath width, which varies from 11 km in the nadir to 32 km at the most oblique angle, is governed by the camera's instantaneous field-of-view of 7 meters cross-track x 6 meters along-track in the nadir view and 21 meters x 55 meters at the most oblique angle. The along-track image length at each angle is dictated by the timing required to obtain overlap imagery at all angles, and varies from about 9 km in the nadir to 26 km at the most oblique angle. Thus, the nadir image dictates the area of overlap that is obtained from all nine angles. A complete flight run takes approximately 13 minutes.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Autonomous Modular Sensor

The Autonomous Modular Sensor (AMS) is an airborne scanning spectrometer that acquires high spatial resolution imagery of the Earth's features from its vantage point on-board low and medium altitude research aircraft. Data acquired by AMS is helping to define, develop, and test algorithms for use in a variety of scientific programs that emphasize the use of remotely sensed data to monitor variation in environmental conditions, assess global change, and respond to natural disasters.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - ER-2 - AFRC