Synonyms: 
DC8
DC-8
NASA DC8
Associated content: 

Counterflow Virtual Impactor

The NCAR counterflow virtual impactor (CVI) (Noone et al., 1988; Twohy et al., 1997) is an airborne instrument that can be used for studies of aerosol/cloud interactions, cloud physics, and climate. At the CVI inlet tip, cloud droplets or ice crystals larger than about 8 µm aerodynamic diameter are separated from the interstitial aerosol and impacted into dry nitrogen gas. This separation is possible via a counterflow stream of nitrogen out the CVI tip, which assures that only larger particles (cloud droplets or ice crystals) are sampled. Because droplets or crystals in a sampling volume of about 200 l/min are impacted into a sample stream of approximately 10 l/min, concentrations within the CVI are significantly enhanced. The water vapor and non-volatile residual nuclei remaining after droplet evaporation are sampled downstream of the inlet with selected instruments. These may include a Lyman-alpha or similar hygrometer, a condensation nucleus counter, an optical particle counter, filters for chemical analyses, or user instruments.

Point(s) of Contact: 

Digital Camera System

DCS is a 16-megapixel color infrared digital camera system, providing high resolution imagery for mission tracking purposes Geo-referenced image products may be generated, when used in conjunction with a POS-AV system.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Carbon Dioxide Laser Absorption Spectrometer

The CO2LAS instrument was jointly developed by JPL and Lockheed Martin Coherent Technologies under funding from the NASA Earth Science Technology Office Instrument Incubator Program.

The instrument uses three continuous-wave (c.w.) Th:Ho:YLF lasers, one of which is used as an absolute frequency reference and is locked to a carbon dioxide absorption line in an internal gas cell using a phase modulation spectroscopy scheme. The remaining two lasers are offset frequency locked from the reference laser to provide the online and offline beams that are propagated through the atmosphere. The online and offline beams are expanded to an eye-safe level and transmitted to the ground where they are reflected back to the instrument, collected by the receive optics and detected. The use of the offset frequency-locking scheme together with the absolute frequency reference enables the absolute frequency of the online and offline lasers to be held to within 200 kHz of the desired values. The CO2LAS transceiver uses separate co-axial transmit/receive paths for each of the on-line and off-line channels.

A Doppler frequency shift is induced between the outgoing and return signals by pointing the transmit beams slightly off nadir. This frequency offset, together with a polarization transmit/receive architecture, ensures the receive signals are separated from the transmit signals by both polarization and frequency. The nominal Doppler offset is 15 MHz but this will vary as the aircraft attitude changes. The return signals on each channel are digitized and stored during flight for post-processing. Throughput of the data collection system was increased from ~8% to >20% between 2006 and 2007.

In order to ensure the instrument remains stable, the output power and frequency of all three lasers are monitored. The output power values for the online and offline lasers are used in the determination of the on-line and off-line absorption as part of the LAS measurement. The output power value for the reference laser is used primarily as a laser health status to check the integrity of the CO2 line center lock.

The electronics for the CO2LAS are mounted in two racks that typically mount to the seat rails of the host aircraft. One rack contains the control electronics for the transceiver system, laser controller, frequency locking electronics and provides the user interface for the overall system.

The second rack houses the chiller that supplies the optical transceiver with coolant and the signal processor which receives housekeeping data from the electronics rack, and digitizes, stores and analyzes the lidar return signal. The CO2LAS uses a Gigabit Ethernet system to distribute data across the system and to other computers that can be connected into the gigabit hub located in the back of one of the racks.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Tropospheric Ozone and Tracers from Commercial Aircraft Platforms

Ozone is measured in a dual-beam ultraviolet (254 nm) absorption analyzer. Ambient air flows through one absorption cell while air scrubbed of ozone flows through an adjacent one. This allows continuous measurement of both background and absorption signals. Flows are switched between cells by a pair of solenoid valves, which permits monitoring of optical changes. Water vapor is detected with a tunable diode laser spectrometer designed and built by Randy May. This sensor employs a room-temperature near-infrared laser (single mode at about 1.37 microns) and second harmonic detection, rather than direct absorption. Unlike the JPL water instrument, this sensor has an internal absorption path, optimized for the mid-troposphere. Carbon dioxide is measured by its absorption in the infrared (4.25 microns) using a LiCor NDIR instrument. This is also a dual-cell device, in which the absorption caused by the ambient air sample is compared to that from a reference gas of known composition. Halocarbons are monitored with a custom-built gas chromatograph, using short, packed columns and small ovens, and HP micro-electron capture detectors. Ambient sample and standard will be run simultaneously on paired columns to reduce errors associated with drift in ECD response.

Measurements: 
Point(s) of Contact: 

Focused Cavity Aerosol Spectrometer

The FCAS II sizes particles in the approximate diameter range from 0.07 mm to 1 mm. Particles are sampled from the free stream with a near isokinetic sampler and are transported to the instrument. They are then passed through a laser beam and the light scattered by individual particles is measured. Particle size is related to the scattered light. The data reduction for the FCAS II takes into account the water which is evaporated from the particle in sampling and the effects of anisokinetic sampling (Jonsson et al., 1995).

The FCAS II and its predecessors have provided accurate aerosol size distribution measurements throughout the evolution of the volcanic cloud produced by the eruption of Mt. Pinatubo. (Wilson et al., 1993). Near co-incidences between FCAS II and SAGE II measurements show good agreement between optical extinctions calculated from FCAS size distributions and extinctions measured by SAGE II.

Accuracy: The instrument has been calibrated with monodisperse aerosol carrying a single charge. The FCAS III and the electrometer agree to within 10%. Sampling errors may increase the uncertainty but a variety of comparisons suggests that total uncertainties in aerosol surface are near 30% (Jonsson, et al., 1995).

Precision: The precision equals 1/ÖN where N is the number of particles counted. In many instances the precision on concentration measurements may reach 7% for 0.1 Hz data. If better precision is desired, it is necessary only to accumulate over longer time intervals.

Response Time: Data are processed at 0.1 Hz. However, the response time depends upon the precision required to detect the change in question. Small changes may require longer times to detect. Plume measurements may be processed with 1 s resolution.

Weight: Approximately 50 lbs.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Condensation Nuclei Counter

The CNC counts particles in the approximate diameter range from 0.006 m to 2 m. The instrument operates by exposing the articles to saturated Flourinert vapor at 28 C and then cooling the sample in a condenser at 5 C. The supersaturation of the vapor increases as it is cooled and the vapor condenses on the particles causing them to grow to sizes which are easily detected. The resulting droplets are passed through a laser beam and the scattered light is detected. Individual particles are counted and are referred to as condensation nuclei (CN). Two CN Counters are provided in the instrument. One counts the particles after sampling from the atmosphere and the second counts particles that have survived heating to 192C. Lab experiments show that pure sulfuric acid particles smaller than 0.05 mm are volatilized in the heater. The heated channel detects when small particles are volatile and permits speculation about the composition. The CNC II contains an impactor collector which permits the collection of particles on electron microscope grids for later analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collect efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 m at WB-57 cruise altitudes. As many as 25 samples can be collected in a flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Digital Mapping System

The Digital Mapping System (DMS) is an airborne digital camera system that acquires high resolution natural color and panchromatic imagery from low and medium altitude research aircraft. The DMS includes an Applanix Position and Orientation system to allow precision image geo-rectification. Data acquired by DMS are used by a variety of scientific programs to monitor variation in environmental conditions, assess global change, and respond to natural disasters.

Mission data are processed and archived by the Airborne Sensor Facility (ASF) located at the NASA Ames Research Center in Mountain View, CA. DMS imagery from Operation IceBridge are archived at the National Snow and Ice Data Center in Boulder, CO.

Instrument Type: Canon/Zeiss Camera with IMU/GPS
Measurements: 21-Mpixel natural color Imagery

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Conically-Scanning Two-look Airborne Radiometer

C-STAR measures precipitation, surface water and near ocean surface wind speed and direction.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Carbon Monoxide By Attenuation of Laser Transmission

COBALT makes measurements using off-axis integrated output spectroscopy.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Cloud Imaging Probe

CIP obtains cloud particle images using a 64-element photodiode array probe to generate 2-Dimensional images of particles from 25-1550 μm, as well as sizing in 1-Dimensional histogram form, and includes housekeeping data.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - DC-8 - AFRC