Associated content: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

Diode Laser Hygrometer

The DLH has been successfully flown during many previous field campaigns on several aircraft, most recently ACTIVATE (Falcon); FIREX-AQ, ATom, KORUS-AQ, and SEAC4RS (DC-8); POSIDON (WB-57); CARAFE (Sherpa); CAMP2Ex and DISCOVER-AQ (P-3); and ATTREX (Global Hawk). This sensor measures water vapor (H2O(v)) via absorption by one of three strong, isolated spectral lines near 1.4 μm and is comprised of a compact laser transceiver and a sheet of high grade retroflecting road sign material to form the optical path. Optical sampling geometry is aircraft-dependent, as each DLH instrument is custom-built to conform to aircraft geometric constraints. Using differential absorption detection techniques, H2O(v) is sensed along the external path negating any potential wall or inlet effects inherent in extractive sampling techniques. A laser power normalization scheme enables the sensor to accurately measure water vapor even when flying through clouds. An algorithm calculates H2O(v) concentration based on the differential absorption signal magnitude, ambient pressure, and temperature, and spectroscopic parameters found in the literature and/or measured in the laboratory. Preliminary water vapor mixing ratio and derived relative humidities are provided in real-time to investigators.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Cloud Particle Imager

The CPI records high-resolution (2.3 micron pixel size) digital images of particles that pass through the sample volume at speeds up to 200 m/s. In older models, CCD camera flashes up to 75 frames per second (fps), potentially imaging more than 25 particles per frame. More recent camera upgrades capable of bringing frame rate to nearly 500 fps. Real time image processing crops particle images from the full frame, eliminating blank space and compressing data by >1000:1. CPI is designed for ummanned use, with AI parameters to optimize performance without supervision.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

2D-S Stereo Probe

The 2D-S Stereo Probe is an optical imaging instrument that obtains stereo cloud particle images and concentrations using linear array shadowing. Two diode laser beams cross at right angles and illuminate two linear 128-photodiode arrays. The lasers are single-mode, temperature-stabilized, fiber-coupled diode lasers operating at 45 mW. The optical paths are arbitrarily labeled the “vertical” and “horizontal” probe channels, but the verticality of each channel actually depends on how the probe is oriented on an aircraft. The imaging optical system is based on a Keplerian telescope design having a (theoretical) primary system magnification of 5X, which results in a theoretical effective size of (42.5 µm + 15 µm)/5 = 11.5 µm. However, actual lenses and arrays have tolerances, so it is preferable to measure the actual effective pixel size by dropping several thousands of glass beads with known diameters through the object plane of the optics system.

Instrument Type: 
Point(s) of Contact: 

Pages

Subscribe to RSS - POSIDON