Synonyms: 
Operation Ice Bridge
Ice Bridge
IceBridge
Operations IceBridge
Associated content: 

Multichannel Coherent Radar Depth Sounder

The Center for Remote Sensing of Ice Sheets (CReSIS) has developed radars (MCoRDS) that operate over the frequency range from 140 to 230 MHz with multiple receivers developed for airborne sounding and imaging of ice sheets. MCoRDS radars have an adjustable radar bandwidth of 20 MHz to 60 MHz. Multiple receivers permit digital beamsteering for suppressing cross-track surface clutter that can mask weak ice-bed echoes and strip-map synthetic aperture radar (SAR) images of the ice-bed interface. With 200 W of peak transmit power, a loop sensitivity > 190 dB is achieved. These radars are flown on twin engine and long-range aircraft including NASA P-3 and DC-8.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Digital Mapping System

The Digital Mapping System (DMS) is an airborne digital camera system that acquires high resolution natural color and panchromatic imagery from low and medium altitude research aircraft. The DMS includes an Applanix Position and Orientation system to allow precision image geo-rectification. Data acquired by DMS are used by a variety of scientific programs to monitor variation in environmental conditions, assess global change, and respond to natural disasters.

Mission data are processed and archived by the Airborne Sensor Facility (ASF) located at the NASA Ames Research Center in Mountain View, CA. DMS imagery from Operation IceBridge are archived at the National Snow and Ice Data Center in Boulder, CO.

Instrument Type: Canon/Zeiss Camera with IMU/GPS
Measurements: 21-Mpixel natural color Imagery

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Accumulation Radar

Fine depth resolution profiling of the top 100 m of the ice column is achieved with this radar designed to map variations in the snow accumulation rate. When operated from aircraft, it operates from 600 to 900 MHz providing 28-cm depth resolution in ice and when operated on the ground (500 MHz to 2 GHz) a 5.6-cm depth resolution in ice is achieved. This fine depth resolution enables area extensive spatial mapping of the annual accumulation layers.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Airborne Topographic Mapper

The Airborne Topographic Mapper (ATM) is a scanning LIDAR developed and used by NASA for observing the Earth's topography for several scientific applications, foremost of which is the measurement of changing arctic and antarctic icecaps and glaciers. It typically flies on aircraft at an altitude between 400 and 800 meters above ground level, and measures topography to an accuracy of ten to twenty centimeters by incorporating measurements from GPS (global positioning system) receivers and inertial navigation system (INS) attitude sensors.

The ATM instruments are based at NASA's Wallops Flight Facility (WFF) in Virginia. They commonly fly aboard the NASA P3-B based at WFF and have flown aboard other P-3 aircraft, the NASA DC-8, several twin-otters (DHC-6), and a C-130; they can fly on most Twin Otter/King Air-class aircraft. The ATM has flown surveys in Greenland nearly every year since 1993. Other uses have included measurement of sea ice, verification of satellite radar and laser altimeters, and measurement of sea-surface elevation and ocean wave characteristics. The altimeter often flies in conjunction with a variety of other instruments. The ATM has been participating in NASA's Operation IceBridge since 2009.

Instrument Type: 
Measurements: 
Point(s) of Contact: 
William Krabill (Prev PI)

Pages

Subscribe to RSS - OIB