Associated content: 

Examination of aerosol indirect effects during cirrus cloud evolution

Maciel, F. V., M. Diao, and R. Patnaude (2023), Examination of aerosol indirect effects during cirrus cloud evolution, Atmos. Chem. Phys., 23, 1103-1129, doi:10.5194/acp-23-1103-2023.

A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry

Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol

Perring, A., et al. (2013), Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol, Aerosol Sci. Tech., 47, 1066-1072, doi:10.1080/02786826.2013.821196.

Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud

Ullrich, R., et al. (2019), Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud, J. Atmos. Sci., 76, 1015-1029, doi:10.1175/JAS-D-18-0034.1.

Sampling the composition of cirrus ice residuals

Cziczo, D., and K. Froyd (2014), Sampling the composition of cirrus ice residuals, Atmos. Res., 142, 15-31, doi:10.1016/j.atmosres.2013.06.012.

Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation

Harvard Halogen Instrument

Many changes from the original Chlorine Nitrate instrument. NO2 instrument removed. New inlet with orifice for one halogen duct, addition of vacuum scroll pump, new RF oscillators and amplifiers, new RF frequency, new lamp housings and cooling for lamp modules. Flew in MACPEX without dissociation heaters, i.e., focus on BrO and ClO measurements and not measure ClONO2 or ClOOCl.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Harvard Herriott Hygrometer

The Harvard Herriott Hygrometer (HHH) is a multipass Herriott cell that measures water vapor via direct detection. Predicted accuracy and precision are ± 3–5% and ± 0.05 ppmv H2O, in the lower stratosphere, for a 10-s integration time, respectively. The theory and application of HHH as a water vapor instrument are laid out in the context of making accurate measurements traceable to laboratory standards. In conjunction with the Harvard Water Vapor (HWV) instrument, HHH will establish ultimate credibility via three, independent detection methods in-flight and five for laboratory and in-field calibration. A multi-detection, calibration system of this nature is beyond the scope of any in existence today. Because HHH promises such high reliability and slight margins of error, the data acquired by this instrument should minimize the uncertainty associated with natural and anthropogenic climate forcing. HHH may serve as a prototype instrument for the use of miniaturized, TDL systems as in situ quantifiers of atmospheric gases via the straightforward method of direct detection, thus extending the scientific payback of this new system.

Measurements: 
Aircraft: 
WB-57 - JSC, ER-2 - AFRC
Point(s) of Contact: 

Pages

Subscribe to RSS - MACPEX