Organization
NOAA Earth System Research Laboratory
First Author Publications
-
Gao, R., et al. (2014), OH in the tropical upper troposphere and its relationships to solar radiation and reactive nitrogen, J Atmos Chem, 71, 55-64.
-
Gao, R., et al. (2013), A High-Sensitivity Low-Cost Optical Particle Counter Design, Aerosol Science and Technology, 47, 137-145, doi:10.1080/02786826.2012.733039.
-
Gao, R., et al. (2012), A compact, fast UV photometer for measurement of ozone from research aircraft, Atmos. Meas. Tech., 5, 2201-2210, doi:10.5194/amt-5-2201-2012.
-
Gao, R., et al. (2008), Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, J. Geophys. Res., 113, D14203, doi:10.1029/2007JD009358.
-
Gao, R., et al. (2008), Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, J. Geophys. Res., 113, D14203, doi:10.1029/2007JD009358.
-
Gao, R., et al. (2007), A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer, Aerosol Sci. Tech., 41, 125-135, doi:10.1080/02786820601118398.
-
Gao, R., et al. (2006), Measurements of relative humidity in a persistent contrail, Atmos. Environ., 40, 1590-1600, doi:10.1016/j.atmosenv.2005.11.021.
-
Gao, R., et al. (2004), Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303, 516-520, doi:10.1126/science.1091255.
-
Gao, R., et al. (2001), JNO2 at high solar zenith angles in the lower stratosphere, Geophys. Res. Lett., 28, 2405-2408.
-
Gao, R., et al. (2001), Observational evidence for the role of denitrification in Arctic stratospheric ozone loss, Geophys. Res. Lett., 28, 2879-2882.
-
Gao, R., et al. (1999), A comparison of observations and model simulations of NOx/NOy in the lower stratosphere, Geophys. Res. Lett., 26, 1153-1156.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Liu, S., et al. (2021), Sea spray aerosol concentration modulated by sea surface temperature, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2020583118.
-
Bourgeois, I.E.V., et al. (2020), Global-scale distribution of ozone in the remote troposphere from ATom and HIPPO airborne field missions., Atmos. Chem. Phys., doi:10.5194/acp-2020-315.
-
Brock, C.A., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081-3099, doi:10.5194/amt-12-3081-2019.
-
Yu, P., et al. (2019), Efficient In‐Cloud Removal of Aerosols by Deep Convection, Geophys. Res. Lett., 46, 1061-1069, doi:10.1029/2018GL080544.
-
Rollins, A.W., et al. (2018), SO2 Observations and Sources in the Western Pacific Tropical Tropopause Region, J. Geophys. Res., 123, 13,549-13,559, doi:10.1029/2018JD029635.
-
Jensen, E.J., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
-
Perring, A.E., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
-
Rollins, A.W., et al. (2017), The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere, Geophys. Res. Lett., 44, doi:10.1002/2017GL072754.
-
Telg, H., et al. (2017), A practical set of miniaturized instruments for vertical profiling of aerosol physical properties, Aerosol Sci. Tech., 51, 715-723, doi:10.1080/02786826.2017.1296103.
-
Thornberry, T.D., et al. (2017), Ice water content-extinction relationships and effective diameter for TTL cirrus derived from in situ measurements during ATTREX 2014, J. Geophys. Res., 122, 4494-4507, doi:10.1002/2016JD025948.
-
Schwarz, J.P., et al. (2015), Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer, Journal of Aerosol Science, 81, 110-126.
-
Thornberry, T.D., et al. (2015), A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere, Atmos. Meas. Tech., 8, 211-224, doi:10.5194/amt-8-211-2015.
-
Rollins, A.W., et al. (2014), Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission, J. Geophys. Res., 119, doi:10.1002/2013JD020817.
-
Jensen, E.J., et al. (2013), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1217104110.
-
Perring, A.E., et al. (2013), Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol, Aerosol Sci. Tech., 47, 1066-1072, doi:10.1080/02786826.2013.821196.
-
Schwarz, J.P., et al. (2013), Black carbon aerosol size in snow, SCIENTIFIC REPORTS, 3, 1356-1460, doi:10.1038/srep01356.
-
Thornberry, T.D., et al. (2013), Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry, Atmos. Meas. Tech., 6, 1461-1475, doi:10.5194/amt-6-1461-2013.
-
Tuck, A.F., et al. (2013), Molecular velocity distributions and generalized scale invariance in the turbulent atmosphere, Faraday Discussions, 130, 181-193, doi:10.1039/b410551f.
-
Schwarz, J.P., et al. (2012), Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow, Atmos. Meas. Tech., 5, 2581-2592, doi:10.5194/amt-5-2581-2012.
-
Brock, C.A., et al. (2011), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423-2453, doi:10.5194/acp-11-2423-2011.
-
Huang, X.-F., et al. (2011), Black carbon measurements in the Pearl River Delta region of China, J. Geophys. Res., 116.
-
Rollins, A.W., et al. (2011), Catalytic oxidation of H2 on platinum: a robust method for generating low mixing ratio H2O standards, Atmos. Meas. Tech., 4, 2059-2064, doi:10.5194/amt-4-2059-2011.
-
Spackman, J.R., et al. (2011), Seasonal variability of black carbon mass in the tropical tropopause layer, Geophys. Res. Lett., 38, L09803, doi:10.1029/2010GL046343.
-
Stith, J.L., et al. (2011), Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm, Atmos. Chem. Phys., 11, 6229-6243, doi:10.5194/acp-11-6229-2011.
-
Thornberry, T.D., et al. (2011), Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance, Atmos. Meas. Tech., 4, 289-296, doi:10.5194/amt-4-289-2011.
-
Wofsy, S., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
-
Cooper, O.R., et al. (2010), LETTERS Increasing springtime ozone mixing ratios in the free troposphere over western North America, Nature, doi:10.1038/nature08708.
-
Park, S., et al. (2010), Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species, Atmos. Chem. Phys., 10, 6669-6684, doi:10.5194/acp-10-6669-2010.
-
Schwarz, J.P., et al. (2010), The Detection Efficiency of the Single Particle Soot Photometer, Aerosol Sci. Tech., 44, 612-628, doi:10.1080/02786826.2010.481298.
-
Schwarz, J.P., et al. (2010), Global‐scale black carbon profiles observed in the remote atmosphere and compared to models, Geophys. Res. Lett., 37, L18812, doi:10.1029/2010GL044372.
-
Spackman, J.R., et al. (2010), Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic, Atmos. Chem. Phys., 10, 9667-9680, doi:10.5194/acp-10-9667-2010.
-
Tilmes, S., et al. (2010), An aircraft-based upper troposphere lower stratosphere O3, CO and H2O climatology for the Northern Hemisphere, J. Geophys. Res.(submitted).
-
Popp, P., et al. (2009), Stratospheric correlation between nitric acid and ozone, J. Geophys. Res., 114, D03305, doi:10.1029/2008JD010875.
-
Schwarz, J.P., et al. (2009), Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city, Geophys. Res. Lett., 36, L15807, doi:10.1029/2009GL039213.
-
Livesey, N.J., et al. (2008), Validation of Aura Microwaver Limb Sounder O 3 and CO observations in the upper troposphere and lower stratosphere, J. Geophys. Res., 113, D15S02, doi:10.1029/2007JD008805.
-
Schwarz, J.P., et al. (2008), Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res., 113, D03203, doi:10.1029/2007JD009042.
-
Spackman, J.R., et al. (2008), Empirical correlations between black carbon aerosol and carbon monoxide in the lower and middle troposphere, Geophys. Res. Lett., 35, L19816, doi:10.1029/2008GL035237.
-
Marcy, T., et al. (2007), Measurements of trace gases in the tropical tropopause layer, Atmos. Environ., 41, 7253-7261, doi:10.1016/j.atmosenv.2007.05.032.
-
Park, S., et al. (2007), The CO2 tracer clock for the Tropical Tropopause Layer, Atmos. Chem. Phys., 7, 3989-4000, doi:10.5194/acp-7-3989-2007.
-
Popp, P., et al. (2007), Condensed-phase nitric acid in a tropical subvisible cirrus cloud, Geophys. Res. Lett., 34, L24812, doi:10.1029/2007GL031832.
-
Kita, K., et al. (2006), A chemical ionization mass spectrometer for ground-based measurements of nitric acid, J. Atmos. Oceanic Technol., 23, 1104-1113.
-
Popp, P., et al. (2006), The observation of nitric acid-containing particles in the tropical lower stratosphere, Atmos. Chem. Phys., 6, 601-611, doi:10.5194/acp-6-601-2006.
-
Schwartz, J.P., et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D1607, doi:10.1029/2006JD007076.
-
Schwarz, J.P., et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D16207, doi:10.1029/2006JD007076.
-
Marcy, T., et al. (2005), Using chemical ionization mass spectrometry for detection of HNO3, HCl, and ClONO2 in the atmosphere, International Journal of Mass Spectrometry, 243, 63-70, doi:10.1016/j.ijms.2004.11.012.
-
Dhaniyala, S., et al. (2004), Stratospheric Aerosol Sampling: Effect of a Blunt-Body Housing on Inlet Sampling Characteristics, Aerosol Sci. Tech., 38, 1080-1090, doi:10.1080/02786829088581.
-
Marcy, T., et al. (2004), Quantifying Stratospheric Ozone in the Upper Troposphere with in Situ Measurements of HCl, Science, 304, 261-265, doi:10.1126/science.1093418.
-
Popp, P., et al. (2004), Nitric acid uptake on subtropical cirrus cloud particles, J. Geophys. Res., 109, D06302, doi:10.1029/2003JD004255.
-
Northway, M.J., et al. (2002), An analysis of large HNO3-containing particles sampled in the Arctic stratosphere during the winter of 1999/2000, J. Geophys. Res., 107, 8298, doi:10.1029/2001JD001079.
-
Northway, M.J., et al. (2002), Relating inferred HNO3 flux values to the denitrification of the 1999—2000 Arctic vortex, Geophys. Res. Lett., 29, doi:10.1029/2002GL015000.
-
Fahey, D.W., et al. (2001), The detection of large HNO3-containing particles in the winter artic stratosphere, Science, 291, 1026-1031.
-
Lanzendorf, E.J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
-
Neuman, J.A., et al. (2001), In situ measurements of HNO3, NOy, NO, and O3 in the lower stratosphere and upper troposphere, Atmos. Environ., 35, 5789-5797.
-
Perkins, K.K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
-
Popp, P., et al. (2001), Severe and extensive denitrification in the 1999-2000 Arctic Winter Stratosphere, Geophys. Res. Lett., 28, 2875-2878.
-
Fahey, D.W., et al. (2000), Ozone destruction and production rates between spring and autumn in the Arctic stratosphere, Geophys. Res. Lett., 27:, 2605-2608.
-
Neuman, J.A., et al. (2000), A fast response chemcial ionization mass spectrometer for in situ measurements of HNO3 in the upper troposphere and lower stratosphere, Rev. Sci. Instrum., 71, 3886-3894.
-
Keim, E.R., et al. (1999), NOy partitioning from measurements of nitrogenand hydrogen radicals in the upper troposphere, Geophys. Res. Lett., 26, 51-54.
-
Strawa, A., et al. (1999), Carbonaceous aerosol (Soot) measured in the lower stratosphere during POLARIS and its role in stratospheric chemistry, J. Geophys. Res., 104, 26753-26766.
-
Del Negro, L.A., et al. (1997), Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3 solutins in Antarctic polar stratospheric cloud aerosol: Observations and implications, J. Geophys. Res., 102, 13255.
-
Chang, A.Y., et al. (1996), A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Halogenated gases, Geophys. Res. Lett., 23, 2393-2396.
-
Chang, A.Y., et al. (1996), A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Tracers of atmospheric transport, Geophys. Res. Lett., 23, 2389-2392.
-
Fahey, D.W., et al. (1996), In situ observations of NOy, O3, and NOy/O3 ratio in the lower stratosphere, Geophys. Res. Lett., 23, 1653-1656.
-
Keim, E.R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
-
Newchurch, M., et al. (1996), Stratospheric NO and NO2 abundances from atmos solar-occultation measurements, Geophys. Res. Lett., 23, 2373-2376.
-
Fahey, D.W., et al. (1995), In situ observations of aircraft exhaust in the lower stratosphere at midlatitudes, J. Geophys. Res., 3065-3074 (manuscript in preparation).
-
Cohen, R.C., et al. (1994), Are Models of Catalytic Removal of O3 by HOx accurate? Constraints From in situ Measurements of the OH to HO2 Ratio, Geophys. Res. Lett., 21, 2539-2542.
-
Jaeglé, L., et al. (1994), In Situ Measurements of the NO2/NO Ratio For Testing Atmospheric Photochemical Models, Geophys. Res. Lett., 21, 2555-2558.
-
Salawitch, R.J., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
-
Salawitch, R.J., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
-
Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.