

Emissions of volatile organic compounds (VOCs) from wildfires and agricultural burning in the United States during SEAC⁴RS

¹ Dept. of Chemistry, University of California – Irvine, CA 92697, USA (isimpson@uci.edu), ² Dept. of Chemistry, University of Montana, Missoula, MT 59812, USA, ³ NASA Langley Research Center

Figure 2. Field operations aboard the NASA DC-8 aircraft during the SEAC⁴RS mission.

Fires sampled during SEAC⁴RS

Table 1. Agricultural fires (AG) and wildfires (WF) purposely sampled by the DC-8 during SEAC⁴RS.

Fire type	Location	Lat (°N)	Lon (°W)	Flt: Date	Peak CO*	Comments
WF-01	OR	41.41	123.63	1: Aug 6	1250 ppb	Forks Comp
WF-02	OR	41.87	123.80	1: Aug 6	2436 ppb	Big Windy (
WF-03	СО	38.21	103.71	5: Aug 16	310 ppb	Colorado fi
WF-04a	ID/WY	44.51	104.43	6: Aug 19	392 ppb	Wyoming fi
WF-04b	KS	37.76	99.11	6: Aug 19	408 ppb	7-10 smoke
WF-05	СА	38.15	119.92	9: Aug 26	6031 ppb	Rim fire; we
""	CA/MT	46.66	113.64	10: Aug 27	968 ppb	Aged Rim fi
AG-01	МО	36.83	89.71	14: Sep 6	860 ppb	Single pass
AG-02	LA	32.48	91.86	15: Sep 9	537 ppb	Cross-plum
AG-03	LA	32.35	91.98	15: Sep 9	2210 ppb	Multiple pa
AG-04	AR	36.06	90.90	16: Sep 11	1010 ppb	Long axis (s
AG-05	AR	35.74	90.00	18: Sep 16	485 ppb	Two passes
AG-06	AR	35.66	90.07	18: Sep 16	234 ppb	Possibly age
AG-07**	AR	35.56	90.18	18: Sep 16	515 ppb	New fire
AG-08**	AR	35.52	90.24	18: Sep 16	435 ppb	Very small f
AG-09	AR	34.39	90.72	18: Sep 16	265 ppb	New fire
AG-10	MS	33.84	90.84	18: Sep 16	188 ppb	New fire
AG-11	MS	33.78	90.88	18: Sep 16	254 ppb	New fire
AG-12**	MO	36.56	90.21	21: Sep 23	290 ppb	Small fire
AG-13	MO	36.47	90.11	21: Sep 23	857 ppb	Brief but hi
AG-14	AR	36.31	90.58	21: Sep 23	1605 ppb	Multiple pa
AG-15	AR	35.68	91.22	21: Sep 23	239 ppb	Long axis (s
AG-16	AR	36.02	90.85	21: Sep 23	1467 ppb	Multiple pa

* Peak CO values are based on DACOM data from the WAS merge, except Flight 1 which is UCI data from the WAS merge. ** AG fires 7, 8 and 12 were not sampled by WAS. The CO values are based on higher time resolution DACOM peaks.

Isobel J Simpson¹, Nicola J Blake¹, Barbara Barletta¹, Simone Meinardi¹, Jason Schroeder¹, Josette Marrero¹, Stacey Hughes¹, Donald R Blake¹ Robert J Yokelson², Glenn S Diskin³, and many other SEAC⁴RS colleagues

olex fire Complex fire layers ell-mixed plume ire; ID/MT fires

(source \rightarrow d/wind)

sses source \rightarrow downwind)

ed smoke

gh concentrations source \rightarrow downwind) sses

- *Emission ratio (ER):* The initial value of $\Delta X / \Delta Y$ at the source*
- Emission factor (EF): g of X released per kg of fuel burned

Figure 4. CO mixing ratios measured by UCI and DACOM during SEAC⁴RS flights that encountered fires.

Acknowledgements. This work was funded by NASA and the authors thank NASA for supporting the SEAC⁴RS mission. We also thank the staff, crew and aircraft support personnel during the SEAC⁴RS mission, as well as Brent Love, Gloria Liu and Barbara Chisholm for technical and logistical support at UC Irvine.

Figure 6. (Left) Mixing ratios of CO and ethene for Agricultural Fires 13-16, flown on Sept. 23, 2013 (UCI did not sample AG-12). The smoke and background samples were collected at similar altitudes within the planetary boundary layer (0.38-1.21 km). (*Right*) NEMR calculations using *n*-butane as an example.

Table 2. Wildfire and agricultural fire NEMRs for selected UCI compounds measured during SEAC⁴RS.

Fire	Compound	Lifetime	Precis. (%)	Bkgd avg. (pptv) ± 1σ	Plume avg. (pptv) ± 1σ	Plume max.	NEMR to CO (ppbv/ppbv) ± 1σ
WF:1-2	Ethane	2-3 mo	1%	494 ± 127	4033 ± 3347	17870	$(7.31 \pm 0.05) \times 10^{-3}$
WF:1-2	Ethene	1-2 d	3%	34 ± 29	3668 ± 4470	21610	$(8.53 \pm 0.19) \times 10^{-3}$
WF:1-2	Ethyne	2 wk	3%	68 ± 50	1383 ± 1117	5764	$(2.58 \pm 0.03) \times 10^{-3}$
WF:1-2	Propene	11 hr	3%	11 ± 13	654 ± 1064	5168	$(1.77 \pm 0.08) \times 10^{-3}$
WF:1-2	<i>n</i> -Butane	5 d	3%	12 ± 13	184 ± 164	880	$(3.57 \pm 0.03) \times 10^{-4}$
WF:1-2	Benzene	1-2 wk	3%	23 ± 16	807 ± 811	4095	$(1.69 \pm 0.02) \times 10^{-3}$
WF:1-2	CH ₃ Cl	1 yr	5%	562 ± 27	644 ± 91	1049	$(1.77 \pm 0.07) \times 10^{-3}$
AG:13-16	Ethane	2-3 mo	1%	1174 ± 119	3819 ± 3153	10820	(6.68 ± 0.30) x 10 ⁻³
AG:13-16	Ethene	1-2 d	3%	61 ± 19	7086 ± 9620	33210	$(1.93 \pm 0.09) \times 10^{-2}$
AG:13-16	Ethyne	2 wk	3%	179 ± 19	2237 ± 2818	10470	$(5.57 \pm 0.35) \times 10^{-3}$
AG:13-16	Propene	11 hr	3%	8 ± 5	1821 ± 2465	7963	$(4.99 \pm 0.17) \times 10^{-3}$
AG:13-16	<i>n</i> -Butane	5 d	3%	113 ± 25	216 ± 114	476	$(2.52 \pm 0.10) \times 10^{-4}$
AG:13-16	Benzene	1-2 wk	3%	35 ± 6	560 ± 708	2465	$(1.43 \pm 0.06) \times 10^{-3}$
AG:13-16	CH ₃ Cl	1 yr	5%	457 ± 13	1486 ± 1375	5849	$(2.68 \pm 0.22) \times 10^{-3}$
AG:13-16	OCS	2.5 yr	2%	361 ± 17	449 ± 71	614	$(1.74 \pm 0.17) \times 10^{-4}$