Emissions and Evolution of Trace Gases and Particles in Agricultural Fire Plumes

X. Liu¹, L. G. Huey¹, R. J. Yokelson², Y. Zhang¹, B. E. Anderson³, A. Beyersdorf³, P. Campuzano-Jost⁴, J. D. Crounse⁵, J. P. Digangi³, G. S. Diskin³, T. F. Hanisco⁶, J. L. Jimenez⁴, L. King¹, T. Mikoviny⁷, J. Peischl^{4,8}, A. Perring^{4,8}, I. B. Pollack^{4,8}, T. B. Ryerson⁸, G. Sachse³, J. Schwarz⁸, D. J. Tanner¹, L. Thornhill³, Y. Wang¹, R. J. Weber¹, P. O. Wennberg⁵, A. Wisthaler^{7,9}, G. M. Wolfe⁶

1 Introduction

- Agricultural fire emissions can have a large impact on atmospheric composition and air quality on regional scales.
- Chemical and physical transformations of primary emissions can lead to significant changes in gaseous and particulate phase compositions of the smoke.
- Emissions and smoke chemistry are not well characterized.

2 Objectives

- To quantify emissions of trace gases and fine particles from 15 agricultural fires.
- To study the evolution of NO_v species (PAN, NO_x , HNO_3 , nitrate), O_3 , organic aerosol (OA), and brown carbon (BrC) in fire plumes.

3 Aircraft Instrumentation

Gas	SO ₂ , HCI, PAN	GaTech CIMS
	HCN, Hydroxyacetone, C ₂ O ₂ H ₂ , HNO ₂	Caltech CIMS
	VOC and OVOC	Innsbruck PTR-MS
	NO_x , NO_y , O_3	NOAA Chemiluminescence
	CO ₂	NASA AVOCET
	CO	NASA DACOM
	CH ₂ O	Laser-induced fluorescence
Aerosol	BC	NOAA SP2
	SO ₄ , NO ₃ , NH ₄ , CI, OA	CU HR-ToF-AMS
Optical	Particle absorption coefficients	NASA PSAP

4 Fires Sampled

5 Analysis Methods

• Normalized excess mixing ratio (NEMR) was used to calculate emission factors and to study evolution

Figure 1. Emission ratio plot of ΔSO_{2} ΔCO_2 from fire #1 on Sept 11.

CO

Initial

Emissions

Met Data

Aerosol Size

Distribution

A Lagrangian box model was used for modeling smoke chemistry

Vegetation: rice straw

Xiaoxi Liu: xliu322@gatech.edu

