Warning message

Member access has been temporarily disabled. Please try again later.
The KORUS-AQ website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

The dependence of cirrus gamma size distributions expressed as volumes in...

Jackson, R. C., G. McFarquhar, A. M. Fridlind, and R. Atlas (2015), The dependence of cirrus gamma size distributions expressed as volumes in N0-λ-μ phase space and bulk cloud properties on environmental conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS), J. Geophys. Res., 120, doi:10.1002/2015JD023492.
Abstract: 

The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N0, λ, μ) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D > 15 μm collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N0, μ, and λ from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension Dmm as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N0, μ, and λ, bulk extinction, IWC, and Dmm with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 μm, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N0, μ, and λ between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)