Dual-Frequency Airborne Precipitation Radar (PR-2)

Status

Status: 
Retired
Operated By: 
PI
Replaced By: 

The Second Generation Precipitation Radar (PR-2) is a dual-frequency, Doppler, dual-polarization radar system.

The airborne PR-2 system includes a real-time pulse compression processor, a fully-functional control and timing unit, and a very compact LO/IF module, all of which could be used in spaceborne applications.

The RF circuitry can be divided into two categories: circuits operating at frequencies of less than 1.5 GHz and circuits operating at frequencies above 1.5 GHz. The lower frequency (below 1.5 GHz) circuitry is all contained in a single unit, the local oscillator / intermediate frequency (LO/IF) module. This unit converts transmit chirp signals from 15 MHz up to 1405 MHz and downconverts received IF signals from 1405 MHz to 5 MHz. The unit contains both upconversion channels and all four receive channels and fits into the equivalent of a double wide 6U-VME card.

The RF front-end electronics are unique to the airborne PR-2 design and consist of five units: one local oscillator / up converter (LO/U) unit, two TWTAs and two waveguide front end (WGFE) units. In the DC-8 installation, the two TWTAs are stacked vertically in a standard rack with the LO/U in between them and the two WGFEs are mounted on top of the antenna pressure box, near the antenna feed. A calibration loop is included for each channel. This feeds some of the transmit power to the receiver, allowing in-flight variations of the transmit power and receiver gain to be monitored and removed from the data.

The digital electronics consists of a control and timing unit (CTU), an arbitrary waveform generator (AWG), and a data processor. The CTU generates the pulse timing and all other timing signals. It also provides control signals to RF. The AWG is loaded with a digital version of the linear FM chirp that is to be transmitted. The data processor is based on FPGA technology. It performs pulse compression and averaging in real-time.

The 4 MHz bandwidth received signals are sampled at 20 MHz, then digitally downconverted to complex samples, resulting in I and Q samples at 5 MHz rate. The data processor also includes pulse-pair Doppler processing. The output of the processor is the lag-0 (power) and lag-1 (complex Doppler data) for the co- and crosspolarized channels at each frequency. A VME-based workstation runs the radar, including ingesting and saving the processed data. Following calibration on the ground, the PR-2 data are stored in an HDF format.

Instrument Type: 
Aircraft: 
Missions: 
Point(s) of Contact: 
Eastwood Im (POC; PI)