Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
CRYSTAL-FACE
Associated content: 

Microphysics of Maritime Tropical Convective Updrafts at Temperatures from -20 to -60C

Heymsfield, A., et al. (2009), Microphysics of Maritime Tropical Convective Updrafts at Temperatures from -20 to -60C, J. Atmos. Sci., 66, 3530-3562, doi:10.1175/2009JAS3107.1.

Continuous Flow Diffusion Chambers

The continuous flow diffusion chambers are oriented for vertical flow through an annular space. They are constructed of two cylindrical, thin, ebonized copper walls that are separated by approximately 1.1 cm. The walls of the CFDC are force-cooled either by circulating coolant through copper tubing coils surrounding the outer wall and inside the inner wall (laboratory CFDC) or by using these same coolant coils as evaporators for refrigeration compressor units (aircraft CFDC). In operation, the walls are coated with ice, achieved by flooding the chamber with water. An inlet manifold directs sample air containing aerosol particles into the center of a laminar flow field where the sample is surrounded on either side by particle-free sheath air (or N2). By varying the set temperatures of the two walls, the warm wall provides a vapor source to the cold wall so that water vapor and temperature fields are created. These fields and airflow determine the conditions of exposure for the aerosols during their typical 5 to 20 s residence time in the CFDC. Ice particles grow to relatively large sizes compared to aerosol particles and are distinguished from them using an optical particle counter (0.4 to 20 mm) at the base of the CFDC.

The aircraft CFDC transitions to a hydrphobic warm wall surface in the lower third of the device so that liquid water drops formed at RH>100% will evaporate, leaving only ice crystals as large particles. The only other physical differences between the two devices is the fact that the laboratory CFDC is approximately 50% longer, providing additional ice crystal growth time at ambient lab pressures and the laboratory device has associated equipment for aerosol generation and preconditioning.

An impactor is sometimes used following the optical counter to collect ice crystals onto specialized transmission electron microscope (TEM) grids for analysis of the residual particles. Calculations of air flow, temperature, and humidity are made assuming steady-state conditions (Rogers, 1988). The temperature and supersaturation range are determined by wall temperatures and air flow.

Instrument Type: 
Point(s) of Contact: 

NCAR NOxyO3

The NCAR NOxyO3 instrument is a 4-channel chemiluminescence instrument for the measurement of NO, NO2, NOy, and O3. NOx (NO and NO2) is critical to fast chemical processes controlling radical chemistry and O3 production. Total reactive nitrogen (NOy = NO + NO2 + HNO3 + PANs + other organic nitrates + HO2NO2 + HONO + NO3 + 2*N2O5 + particulate NO3- + …) is a useful tracer for characterizing air masses since it has a tendency to be conserved during airmass aging, as NOx is oxidized to other NOy species.

NOx (NO and NO2), NOy (total reactive nitrogen), and O3 are measured using the NCAR 4-channel chemiluminescence instrument, previously flown on the NASA WB-57F and the NCAR C130. NO is measured via addition of reagent O3 to the sample flow to generate the chemiluminescent reaction producing excited NO2, which is detected by photon counting with a dry-ice cooled photomultiplier tube. NO2 is measured as NO following photolytic conversion of NO2, with a time response of about 3 sec due to the residence time in the photolysis cell. NO is measured with an identical time response due to use of a matching volume. NOy is measured via Au-catalyzed conversion of reactive nitrogen species to NO, in the presence of CO, with a time response of slightly better than 1 sec. O3 is measured using the same chemiluminescent reaction but with the addition of reagent NO to the sample flow. Time response for the ozone measurement is slightly better than 1 s.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Cloud Aerosol and Precipitation Spectrometer

Measures concentration and records images of cloud particles from approximately 50-1600 microns in diameter with a resolution of 25 microns per pixel. Measures cloud droplet and aerosol concentrations within the size range of 0.5-50 microns.

The three DMT instruments included in the CAPS are the Cloud Imaging Probe (CIP), the Cloud and Aerosol Spectrometer (CAS), and the Hotwire Liquid Water Content Sensor (Hotwire LWC).

The CIP, which measures larger particles, operates as follows. Shadow images of particles passing through a collimated laser beam are projected onto a linear array of 64 photodetectors. The presence of a particle is registered by a change in the light level on each diode. The registered changes in the photodetectors are stored at a rate consistent with probe velocity and the instrument’s size resolution. Particle images are reconstructed from individual “slices,” where a slice is the state of the 64-element linear array at a given moment in time. A slice must be stored each time interval that the particle advances through the beam a distance equal to the resolution of the probe. Optional grayscale imaging gives three levels of shadow recording on each photodetector, allowing more detailed information on the particles.

The CAS, which measures smaller particles, relies on light-scattering rather than imaging techniques. Particles scatter light from an incident laser, and collecting optics guide the light scattered in the 4° to 12° range into a forward-sizing photodetector. This light is measured and used to infer particle size. Backscatter optics also measure light in the 168° to 176° range, which allows determination of the real component of a particle’s refractive index for spherical particles.

The Hotwire LWC instrument estimates liquid water content using a heated sensing coil. The system maintains the coil at a constant temperature, usually 125 °C, and measures the power necessary to maintain this temperature. More power is needed to maintain the temperature as droplets evaporate on the coil surface and cool the surface and surrounding air. Hence, this power reading can be used to estimate LWC. Both the LWC design and the optional PADS software contain features to ensure the LWC reading is not affected by conductive heat loss.

Point(s) of Contact: 

ER-2 during CRYSTAL FACE

Clouds during CRYSTAL FACE

Pages

Subscribe to RSS - CRYSTAL FACE