Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
ASHOE
ASHOE-MAESA
ASHOE MAESA
ASHOE/MEASA
Associated content: 

High Resolution Interferometer Sounder

The aircraft HIS is a Fourier Transform Spectrometer which views directly downward through an open port in a pod mounted under the center line of the fuselage. From altitude, its instantaneous FOV is 2 km directly below the plane. Many of the important design parameters of the HIS are summarized in the table.

Calibration is accomplished by viewing two high-emissivity blackbodies, servo-controlled to 300 K and about 240 K. After collecting 12 spectra of the earth, a 45-degree scene-switching mirror rotates the field-of-view from the open Earth viewing port to give four spectra of the hot and four spectra of the cold blackbodies. At about 6 seconds per spectrum, this calibration cycle takes 2 minutes. The blackbodies, built and tested by Eppley Labs, are blackened cavities with thermoelectric cooler/heaters for temperature control and platinum resistance thermometers for monitoring. The temperature of the interferometer optics is not actively controlled.

A linear-plane mirror Michelson interferometer from BOMEM of Canada provides double sided interferograms in both scan directions. Its auto-alignment system makes it possible to operate in the ambient thermal environment of the pod and in very close proximity to the aircraft jet engine. The optical bench isshock-mounted to dampen high-frequency vibration and the interferometer is evacuated to protect the beamsplitter during descent. The three spectral bands, covering most of the region from 3.8 to 16.6 microns, are split inside a single liquid helium dewar, which contains three sets of bandpass cold filters, focusing optics, and arsenic-doped silicon detectors. The preamplifiers are external and operate near the ambient pod temperature of about 260 K. The gain of each channel is fixed, and the signals are digitized with a 16-bit A/D converter. Onboard numerical filtering is used to reduce the sample from the HeNe laser rate by factors of 14, 8, and 8 in bands I, II and III. The data system is controlled with a 6809 microprocessor-based system built at the University of Denver. The three bands of interferometer data and housekeeping parameters are combined and recorded on formatted cassette tapes. Two drives with a capacity of 67 megabytes each are used to provide 9 hours of continuous recording time.

Processing of selected data in the field is performed on IBM-compatible personal computers. Data are transferred to hard disk and is processed with custom software, which displays the measured interferograms and corresponding spectra, and performs calibration to yield radiance or brightness temperature spectra. The calibration procedure uses full complex spectra to avoid errors that can arise from radiance emitted by the warm interferometer. Software is also available to produce vertical cross sections of retrieved atmospheric state parameters, thus permitting science analysis of the results in the field.

The absolute radiometric accuracy is better than 1 degree K brightness temperature (at 260 K) and the noise is a few tenths of a degree K. Temperature retrieval accuracy approaches 1K. The block diagram illustrates the functional overview of the HIS major subsystems, including the Aircraft Experiment Interferometer (AEI), the Onboard Recording System (OBRS), which uses two 3M HCD-75 tapes drives, and the System Control and Monitor (SCAM) System.

Aircraft: 
Point(s) of Contact: 

Multiple Axis Resonance Fluorescence Chemical Conversion Detector for ClO and BrO

Vacuum ultraviolet radiation produced in a low pressure plasma discharge lamp is used to induce resonance scattering in Cl and Br atoms within a flowing sample. ClO and BrO are converted to Cl and Br by the addition of NO such that the rapid bimolecular reaction ClO + NO → Cl + NO2 (BrO + NO → Br + NO2) yields one halogen atom for each halogen oxide radical present in the flowing sample. Three detection axes are used to diagnose the spatial (and thus temporal) dependence of the ClO (BrO) to Cl (Br) conversion and to detect any removal of Cl (Br) following its formation. A double duct system is used both to maintain laminar flow through the detection region and to step the flow velocity in the detection region down from free stream (200 m/sec) to 20 m/sec in order to optimize the kinetic diagnosis.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

NOAA Lyman-Alpha Total Water Hygrometer

Total water is measured in situ as vapor with a Lyman-Alpha hygrometer. High ambient sample flows through a closed cell minimize the effect of trapped water. Lyman-a light (121.6 nm) photodissociates water to produce an excited OH radical. The fluorescence from this radical at 309 nm is detected with a phototube and counting system. At aircraft pressures the fluorescence signal is quenched by air which gives a signal that is proportional to mixing ratio. The Lyman-Alpha radiation produced with a DC-discharge lamp is monitored with an iodine ionization cell that is sensitive from 115 nm to 135 nm. Calibration occurs in flight by injecting water vapor directly into the ambient sample flow.

Measurements: 
Point(s) of Contact: 

NOAA NOy Instrument

The NOy instrument has three independent chemiluminescence detectors for simultaneous measurements of NOy, NO2, and NO. Each detector utilizes the reaction between NO in the sample with reagent O3. The NO/O3 reaction produces excited state NO2 which emits light of near 1µ m wavelength. Emitted photons are detected with a cooled photomultiplier tube.

Because NOy species other than NO do not respond in the chemiluminescence detector, NOy component species are reduced to NO by catalytic reduction on a gold surface with carbon monoxide (CO) acting as a reducing agent. Conversion efficiencies are > 90% at surface temperatures of 300°C. An NO signal representing NOy is then detected by chemiluminescence in the detector module. The catalyst is located outside the aircraft fuselage in order to avoid inlet line losses. NO2 is photolytically converted to NO in a glass cell in the presence of intense UV light between 300 and 400 nm. The conversion fraction is > 50% for a residence time of 1 s. The chemiluminescence detector detects NO as well as the additional NO from NO2. The third channel measures NO directly by passing the ambient sample through the detector module.

The response of each detector is checked several times in flight by standard addition of NO or NO2 calibration gas. The baseline of each measurement is determined in part by the addition of synthetic air that contains no reactive nitrogen. A continuous flow of water vapor is added directly to the sample flow in order to reduce the background signal in the detectors.

The sampling inlet for NOy is located outside the fuselage of the aircraft in a separate football-shaped housing. The shape of the housing allows for the inertial separation of large aerosols (> 5 µm diameter) from the NOy inlet at the downstream end of the housing.

Instrument Type: 
Measurements: 
Aircraft: 
ER-2 - AFRC, Balloon
Point(s) of Contact: 

Frost Point (NOAA)

The NOAA frost point instrument was designed to run unattended under the wing of NASA’s WB-57. An aircraft rated Stirling cooler provides cooling to 100 K. The cooler avoids consumables and provides a large temperature gradient that improves the response time. The vertical pylon houses the optics and provides aerodynamic pumping of the sample volume. At the bottom of the pylon there is a boundary layer plate and a vertical inlet that separates particles larger than 0.2 microns from the sampled air. There are two channels that use blue LEDs and scattered light to detect frost on the mirrors. Diamond mirrors are used for low thermal mass and high conductivity. The two channels are to be used to understand frost characteristics under flight conditions. High flow rates are used to decrease the shear boundary layer to facilitate diffusion through the boundary layer to the mirrors.

Measurements: 
Point(s) of Contact: 

Dual-Beam UV-Absorption Ozone Photometer

The NOAA-O3 instrument consists of a mercury lamp, two sample chambers that can be periodically scrubbed of ozone, and two detectors that measure the 254-nm radiation transmitted through the chamber. The ozone absorption cross-section at this wavelength is accurately known; hence, the ozone number density can be easily calculated. Since the two absorption chambers are identical, virtually continuous measurements of ozone are made by alternating the ambient air sample and ozone scrubbed sample between the two chambers. At a one-second data collection rate, the minimum detectable concentration of ozone (one standard deviation) is 1.5 x 10 10 molecules/cm 3 (0.6ppbv at STP).

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Microwave Temperature Profiler

The Microwave Temperature Profiler (MTP) is a passive microwave radiometer, which measures the natural thermal emission from oxygen molecules in the earth’s atmosphere for a selection of elevation angles between zenith and nadir. The current observing frequencies are 55.51, 56.65 and 58.80 GHz. The measured "brightness temperatures" versus elevation angle are converted to air temperature versus altitude using a quasi-Bayesian statistical retrieval procedure. The MTP has no ITAR restrictions, has export compliance classification number EAR99/NLR. An MTP generally consists of two assemblies: a sensor unit (SU), which receives and detects the signal, and a data unit (DU), which controls the SU and records the data. In addition, on some platforms there may be a third element, a real-time analysis computer (RAC), which analyzes the data to produce temperature profiles and other data products in real time. The SU is connected to the DU with power, control, and data cables. In addition the DU has interfaces to the aircraft navigation data bus and the RAC, if one is present. Navigation data is needed so that information such as altitude, pitch and roll are available. Aircraft altitude is needed to perform retrievals (which are altitude dependent), while pitch and roll are needed for controlling the position of a stepper motor which must drive a scanning mirror to predetermined elevation angles. Generally, the feed horn is nearly normal to the flight direction and the scanning mirror is oriented at 45-degrees with respect to receiving feed horn to allow viewing from near nadir to near zenith. At each viewing position a local oscillator (LO) is sequenced through two or more frequencies. Since a double sideband receiver is used, the LO is generally located near the "valley" between two spectral lines, so that the upper and lower sidebands are located near the spectral line peaks to ensure the maximum absorption. This is especially important at high altitudes where "transparency" corrections become important if the lines are too "thin." Because each frequency has a different effective viewing distance, the MTP is able to "see" to different distances by changing frequency. In addition, because the viewing direction is also varied and because the atmospheric opacity is temperature and pressure dependent, different effective viewing distances are also achieved through scanning in elevation . If the scanning is done so that the applicable altitudes (that is, the effective viewing distance times the sine of the elevation angle) at different frequencies and elevation angles are the same, then inter-frequency calibration can also be done, which improves the quality of the retrieved profiles. For a two-frequency radiometer with 10 elevation angles, each 15-second observing cycle produces a set of 20 brightness temperatures, which are converted by a linear retrieval algorithm to a profile of air temperature versus altitude, T(z). Finally, radiometric calibration is performed using the outside air temperature (OAT) and a heated reference target to determine the instrument gain. However, complete calibration of the system to include "window corrections" and other effects, requires tedious analysis and comparison with radiosondes near the aircraft flight path. This is probably the most important single factor contributing to reliable calibration. For stable MTPs, like that on the DC8, such calibrations appear to be reliable for many years. Such analysis is always performed before MTP data are placed on mission archive computers.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, ER-2 - AFRC, Global Hawk - AFRC, L-188C, M-55, Gulfstream V - NSF, WB-57 - JSC
Point(s) of Contact: 

High-Sensitivity Fast-Response CO2 Analyzer

The high-sensitivity fast response CO2 instrument measures CO2 concentrations in situ using the light source, gas cells, and solid-state detector from a modified nondispersive infrared CO2 analyzer (Li-Cor, Inc., Lincoln, NE). These components are stabilized along the detection axis, vibrationally isolated, and housed in a temperature-controlled pressure vessel. Sample air enters a rear-facing inlet, is preconditioned using a Nafion drier (to remove water vapor), then is compressed by a Teflon diaphragm pump. A second water trap, using dry ice, reduces the sample air dewpoint to less than 70C prior to detection. The CO2 mixing ratio of air flowing through the sample gas cell is determined by measuring absorption at 4.26 microns relative to a reference gas of known concentration. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, with a low-span and a high-span gas every 20 minutes, and with a long-term primary standard every 2 hours. The long-term standard is used sparingly and serves as a check of the flight-to-flight accuracy and precision of the measurements, augmented by ground-based calibrations before and after flights.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

Pages

Subscribe to RSS - ASHOE/MAESA