Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

How well can satellite data characterize the water cycle of the Madden-Julian...

Waliser, D. E., B. Tian, X. Xie, W. T. Liu, M. Schwartz, and E. J. Fetzer (2009), How well can satellite data characterize the water cycle of the Madden-Julian Oscillation?, Geophys. Res. Lett., 36, L21803, doi:10.1029/2009GL040005.
Abstract: 

Most characterizations of the Madden-Julian Oscillation (MJO) have focused on its convection and circulation features, ocean interactions, and weather and climate impacts. The water cycle of the MJO has yet to be examined or quantified despite it offering an additional constraint on model representations of the MJO, which are still woefully poor. Recent satellite products now make it possible to characterize the MJO water cycle from observations. These include water vapor profiles, column water vapor, cloud ice profiles, total cloud liquid, rainfall, surface evaporation and column moisture convergence. From these, we quantify the water budget for disturbed and suppressed phases of the MJO. The column-integrated results indicate that precipitation is nearly balanced with moisture convergence, with variations in surface evaporation being an order of magnitude smaller. However, residuals in the column-integrated budget are relatively large, indicating the need for improved satellite retrievals and/or the necessity of using model-based assimilation products.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)
Atmospheric Composition
Energy & Water Cycle Program (EWCP)
Climate Variability and Change Program
Atmospheric Dynamics and Precipitation Program (ADP)
Mission: 
AQUA-AIRS
Aura MLS
TRMM
QuikSCAT
AQUA-AMSR-E