Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
B-200 - LARC
B200 (L)
Associated content: 

Applanix POS System

POS AV is a hardware and software system specifically designed for direct georeferencing of airborne sensor data. By integrating precision GNSS with inertial technology, POS AV enables geospatial projects to be completed more efficiently, effectively, and economically. POS AV is engineered for aerial cameras, scanning lasers, imaging sensors, synthetic aperture radar, and LIDAR technology.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Raman Airborne Spectroscopic Lidar

The Raman Airborne Spectroscopic Lidar (RASL) consists of a 15W ultraviolet laser, a 24-inch (61-centimeter) diameter Dahl-Kirkham telescope, a custom receiver package, and a structure to mount these components inside an aircraft. Both the DC-8 at NASA Dryden and the P-3 at NASA/Wallops are aircrafts that could carry RASL. The system is unique because it requires the largest window ever put into either of these aircraft. A fused-silica window, diameter of 27 inches (68.6 centimeters) and 2.375 inches (6 centimeters) thick is needed to withstand the pressure and temperature differentials at a 50,000-foot (15.2-kilometer) altitude.

In June through August of 2007, RASL flew numerous times on board a King Air B-200 aircraft out of Bridgewater, VA, in support of the 2007 Water Vapor Validation Experiments (WAVES) campaign. The WAVES campaign was a series of field experiments to validate satellite measurements. RASL data, along with data from ground-based and balloon-borne instruments, were used to assess the CALIPSO and TES instruments and for studies of mesoscale water vapor variability. During the test flights, RASL produced the first-ever simultaneous measurements of tropospheric water vapor mixing ratio and aerosol extinction from an airborne platform.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Land, Vegetation and Ice Sensor

The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Digital Camera System

DCS is a 16-megapixel color infrared digital camera system, providing high resolution imagery for mission tracking purposes Geo-referenced image products may be generated, when used in conjunction with a POS-AV system.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Diode Laser Hygrometer

The DLH has been successfully flown during many previous field campaigns on several aircraft, most recently ACTIVATE (Falcon); FIREX-AQ, ATom, KORUS-AQ, and SEAC4RS (DC-8); POSIDON (WB-57); CARAFE (Sherpa); CAMP2Ex and DISCOVER-AQ (P-3); and ATTREX (Global Hawk). This sensor measures water vapor (H2O(v)) via absorption by one of three strong, isolated spectral lines near 1.4 μm and is comprised of a compact laser transceiver and a sheet of high grade retroflecting road sign material to form the optical path. Optical sampling geometry is aircraft-dependent, as each DLH instrument is custom-built to conform to aircraft geometric constraints. Using differential absorption detection techniques, H2O(v) is sensed along the external path negating any potential wall or inlet effects inherent in extractive sampling techniques. A laser power normalization scheme enables the sensor to accurately measure water vapor even when flying through clouds. An algorithm calculates H2O(v) concentration based on the differential absorption signal magnitude, ambient pressure, and temperature, and spectroscopic parameters found in the literature and/or measured in the laboratory. Preliminary water vapor mixing ratio and derived relative humidities are provided in real-time to investigators.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Autonomous Modular Sensor

The Autonomous Modular Sensor (AMS) is an airborne scanning spectrometer that acquires high spatial resolution imagery of the Earth's features from its vantage point on-board low and medium altitude research aircraft. Data acquired by AMS is helping to define, develop, and test algorithms for use in a variety of scientific programs that emphasize the use of remotely sensed data to monitor variation in environmental conditions, assess global change, and respond to natural disasters.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Compact Atmospheric Mapper

Two spectrographs + HD video camera

Air Quality (AQ) 304:520 nm 0.8 nm resolution (NO2, O3, UV absorbing aerosols, SO2, HCHO)

Ocean Color (OC) 460:900 nm 1.5 nm resolution

Video camera (2592x1936 pixels) –3 pixel FWHM

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - B200 - LARC