The DCOTSS website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Anthony B. Davis
Organization:
Jet Propulsion Laboratory
Business Address:
JPL/CALTECH
Jet Propulsion Laboratory
4800 OAK GROVE DRIVE
PASADENA, CA 91109
United StatesFirst Author Publications:
- Davis, A. B., et al. (2021), Understanding the Phenomenology of Opaque 3D Cloud Image Formation: Another Step Toward Cloud Tomography from Space-Based Imaging at Moderate Resolution, VIRTUAL International Conference on Computational Photography (ICCP), Physics & Optics Track, May. 23-25, Haifa, Israel (manuscript in preparation).
- Davis, A. B., G. Bal, and C. Cornet (2019), Progress in 3D Tomographic Cloud Reconstruction, Part 2: Efficient determination of outer shapes of convective clouds from MISR data using radiosity, MISR Science Team Meeting, Feb. 12-13, Pasadena, Ca (manuscript in preparation).
- Davis, A. B., and O. V. Kalashnikova (2019), Aerosol Layer Height over Water via Oxygen A-Band Observations from Space: A Tutorial, In: Kokhanovsky A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, 3, 133-166, doi:10.1007/978-3-030-03445-0_4.
- Davis, A. B., F. Xu, and D. Diner (2018), Addendum to “Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers” [JQSRT, 205, 148-162 (2018)], J. Quant. Spectrosc. Radiat. Transfer, 206, 251-253, doi:10.1016/j.jqsrt.2017.11.018.
- Davis, A. B., F. Xu, and D. Diner (2018), Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers, J. Quant. Spectrosc. Radiat. Transfer, 205, 148-162, doi:10.1016/j.jqsrt.2017.10.003.
- Davis, A. B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: An optimal estimation approach, J. Quant. Spectrosc. Radiat. Transfer, 216, 6-16, doi:10.1016/j.jqsrt.2018.05.007.
- Davis, A. B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: A physics-based approach, J. Quant. Spectrosc. Radiat. Transfer, 220, 84-96, doi:10.1016/j.jqsrt.2018.09.006.
- Davis, A. B., and F. Xu (2014), A Generalized Linear Transport Model for Spatially Correlated Stochastic Media, Journal of Computational and Theoretical Transport, 43, 474-514, doi:10.1080/23324309.2014.978083.
- Davis, A. B., et al. (2013), 3D radiative transfer effects in multi-angle/multispectral radio-polarimetric signals from a mixture of clouds and aerosols viewed by a non-imaging sensor, SPIE Proceedings, 8873, 887309, doi:10.1117/12.2023733.
- Davis, A. B. (2013), Some New Lidar Equations for Laser Pulses Scattered Back from Optically Thick Media such as Clouds, Dense Aerosol Plumes, Sea Ice, Snow, and Turbid Coastal Waters, SPIE Proceedings, 8872, 88720E, doi:10.1117/12.2025341.
- Davis, A. B., and R. Sanchez (2011), Preface: Two Truly Special Sessions at the 2009 International Conference on Mathematics and Computational Methods (M&C 2009): Transport ... Across Disciplinary Divides, J. Quant. Spectrosc. Radiat. Transfer, 112, 560-565, doi:10.1016/j.jqsrt.2010.11.014.
- Davis, A. B., and M. B. Mineev-Weinstein (2011), Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations, J. Quant. Spectrosc. Radiat. Transfer, 112, 632-645, doi:10.1016/j.jqsrt.2010.10.001.
- Davis, A. B., and A. Marshak (2010), Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts, Reports on Progress in Physics, 73, 26801-26870, doi:10.1088/0034-4885/73/2/026801.
- Davis, A. B., I. N. Polonsky, and A. Marshak (2009), Space‐Time
Green
Functions
for
Diffusive
Radiation
Transport,
in
Application
to
Active
and
Passive
Cloud
Probing, Light
Scattering
Reviews, 4,
169-292.
- Davis, A. B., and A. Marshak (2004), Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions, J. Quant. Spectrosc. Radiat. Transfer, 84, 3-34, doi:10.1016/S0022-4073.
- Davis, A. B., and A. Marshak (2002), Space–Time Characteristics of Light Transmitted through Dense Clouds: A Green’s Function Analysis, J. Atmos. Sci., 59, 2713-2727, doi:10.1175/1520-0469(2002)059<2713:STCOLT>2.0.CO;2.
- Davis, A. B., and A. Marshak (2001), Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P1 Theory, Nuclear Science and Engineering, 137, 251-280, doi:10.13182/NSE01-A2190.
Co-Authored Publications:
- Forster, L., et al. (2021), Toward cloud tomography from space using MISR and MODIS: Locating the "veiled core" in opaque convective clouds, J. Atmos. Sci., 78, 155-166, doi:10.1175/JAS-D-19-0262.1.
- Levis, A., et al. (2020), Multi-view polarimetric scattering cloud tomography and retrieval of droplet size, Remote Sensing, 12, 2831-, doi:10.3390/rs12172831.
- Matheou, G., A. B. Davis, and J. Teixeira (2020), The Spiderweb Structure of Stratocumulus Clouds, Atmosphere, 11, 730, doi:10.3390/atmos11070730.
- Frouin, R., et al. (2019), Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era, Front. Earth Sci., 7, 145, doi:10.3389/feart.2019.00145.
- Jamet, C., et al. (2019), Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Front. Mar. Sci., 6, 251, doi:10.3389/fmars.2019.00251.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry, Multi-Angle and Polarimetry. Front. Environ. Sci., 7, 94, doi:10.3389/fenvs.2019.00094.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument, Ocean Color Instrument. Front. Earth Sci., 7, 152, doi:10.3389/feart.2019.00152.
- Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
- Bal, G., J. Chen, and A. B. Davis (2018), Reconstruction of cloud geometry from high-resolution multi-angle images, Inverse Problems in Imaging, 12, 261-280, doi:10.3934/ipi.2018011.
- Xu, F., et al. (2018), Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), J. Geophys. Res., 123, 3175-3204, doi:10.1002/2017JD027926.
- Fauchez, T., et al. (2017), A fast hybrid (3-D/1-D) model for thermal radiative transfer in cirrus via successive orders of scattering, J. Geophys. Res., 122, 344-366, doi:10.1002/2016JD025607.
- Levis, A., A. B. Davis, and Y. Y. Schechner (2017), Multiple-Scattering Microphysics Tomography, IEEE Conference on Computer Vision and Pattern Recognition (CVPR17), 5797-5806.
- Garay, M., A. B. Davis, and D. Diner (2016), Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument, Geophys. Res. Lett., 43, 12,590-12,596, doi:10.1002/2016GL071479.
- Merlin, G., et al. (2016), Cloud information content analysis of multi-angular measurements in the oxygen A-band: Application to 3MI and MSPI, Atmos. Meas. Tech., 9, 4977-4995, doi:10.5194/amt-9-4977-2016.
- Xu, F., A. B. Davis, and D. Diner (2016), Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization, J. Quant. Spectrosc. Radiat. Transfer, 184, 14-26, doi:10.1016/j.jqsrt.2016.06.004.
- Kokhanovsky, A. A., et al. (2015), Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier, Earth-Science Reviews, 85-116, doi:10.1016/j.earscirev.2015.01.012.
- Levis, A., et al. (2015), Airborne Three-Dimensional Cloud Tomography, Proceedings of the IEEE International Conference on Computer Vision, (ICCV), 3379-3387.
- Yanovsky, I., and A. B. Davis (2015), Separation of a Cirrus Layer and Broken Cumulus Clouds in Multispectral Images, IEEE Trans. Geosci. Remote Sens., 53, 2275-2285, doi:10.1109/TGRS.2014.2352319.
- Sanghavi, S. N., A. B. Davis, and A. Eldering (2014), vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties, J. Quant. Spectrosc. Radiat. Transfer, 133, 412-433, doi:10.1016/j.jqsrt.2013.09.004.
- Langmore, I., A. B. Davis, and G. Bal (2013), Multipixel Retrieval of Structural and Optical Parameters in a 2-D Scene With a Path-Recycling Monte Carlo Forward Model and a New Bayesian Inference Engine, IEEE Trans. Geosci. Remote Sens., 51, 2903-2919, doi:10.1109/TGRS.2012.2217380.
- Xu, F., R. West, and A. B. Davis (2013), A hybrid method for modeling polarized radiative transfer in a spherical-shell planetary atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 117, 59-70, doi:10.1016/j.jqsrt.2012.10.013.
- Diner, D., et al. (2012), An optimization approach for aerosol retrievals using simulated MISR radiances, Atmos. Res., 116, 1-14, doi:10.1016/j.atmosres.2011.05.020.
- Knyazikhin, Y., et al. (2012), Hyperspectral remote sensing of foliar nitrogen content, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1210196109.
- Xu, F., et al. (2012), Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system, Appl. Opt., 51, 3491-3507, doi:10.1364/AO.51.003491.
- Bal, G., A. B. Davis, and I. Langmore (2011), A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport, Journal of Computational Physics, 230, 7723-7735, doi:10.1016/j.jcp.2011.06.029.
- Juárez, M. D., A. B. Davis, and E. J. Fetzer (2011), Scale-by-scale analysis of probability distributions for global MODIS-AQUA cloud properties: how the large scale signature of turbulence may impact statistical analyses of clouds, Atmos. Chem. Phys., 11, 2893-2901, doi:10.5194/acp-11-2893-2011.
- Kalashnikova, O. V., et al. (2011), Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: Quantifying measurement uncertainties, J. Quant. Spectrosc. Radiat. Transfer, 112, 2149-2163, doi:10.1016/j.jqsrt.2011.05.010.
- Xu, F., et al. (2011), Markov chain formalism for polarized light transfer in plane-parallel atmospheres, with numerical comparison to the Monte Carlo method, Optics Express, 19, 946-967, doi:10.1364/OE.19.000946.
- Xu, F., and A. B. Davis (2011), Derivatives of light scattering properties of a nonspherical particle computed with the T-matrix method, Optics Letters, 36, 4464-4466, doi:10.1364/OL.36.004464.
- Xu, F., et al. (2011), Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlying a polarizing surface, Optics Letters, 36, 2083-2085, doi:10.1364/OL.36.002083.
- Ferlay, N., et al. (2010), Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL, J. Appl. Meteor. Climat., 49, 2492-2507, doi:10.1175/2010JAMC2550.1.
- Yang, Y., et al. (2008), Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, J. Atmos. Sci., 65, 3513-3527, doi:10.1175/2008JAS2744.1.
- Cahalan, B., et al. (2005), The I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Am. Meteorol. Soc., 1275-1293, doi:10.1175/BAMS-86-9-1275.
- Marshak, A., et al. (2000), Cloud – vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness, Geophys. Res. Lett., 27, 1695-1698, doi:10.1029/1999GL010993.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.