Warning message

Member access has been temporarily disabled. Please try again later.
The DCOTSS website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Nighttime smoke aerosol optical depth over U.S. rural areas: First retrieval...

Meng Zhou, J. Wang, X. Chen, R. Xu, P. R. Colarco, S. D. Miller, J. Reid, S. Kondragunta, D. Giles, and B. Holben (2021), Nighttime smoke aerosol optical depth over U.S. rural areas: First retrieval from VIIRS moonlight observations, Remote Sensing of Environment, 267, 112717, doi:10.1016/j.rse.2021.112717.
Abstract: 

AOD retrieval Retrieval algorithm VIIRS DNB Moonlight observation Smoke Smoke transport Diurnal cycle Rural air quality An algorithm for retrieving nighttime aerosol optical depth (AOD) from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) observations of reflected moonlight is presented for rural areas during the western U.S. fire seasons. The algorithm uses the UNified and Linearized Vector Radiative Transfer Model (UNLVRTM) with newly developed capabilities for considering lunar illuminations. Cloud and fire pixels are screened out by utilizing the radiance from the VIIRS Moderate-resolution Bands (M-Band) and the DNB. Rural and city pixels are classified based on a pre-calculated city light database. The surface spectral reflectance for DNB ranging from 342 to 1107 nm is estimated by a random forest approach, which is trained using the surface spectral reflectance from the existing spectral libraries. For the fire seasons of 2017 and 2020, the nighttime AOD retrieval is shown to play an indispensable role in describing the nonlinear diurnal movement of smoke transport and discerning the source of smoke plumes heretofore observable only in the daytime. The retrieved AOD values show good agreement with spatiotemporally collocated Aerosol Robotic NETwork (AERONET) and CloudAerosol Lidar with Orthogonal Polarization (CALIOP) AOD values, with linear correlation coefficient values of ~0.96/0.95 and ~86%/69% of the AOD pairs falling in an uncertainty envelope of ±(0.085 + 0.10AOD), which is superior to AOD reanalysis from Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). These results affirm the significant potential of nighttime AOD to improve the analysis and forecast of regional to global biomass-burning aerosol distributions, filling a critical gap in the diurnal description of a key element of Earth’s climate system.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Applied Sciences Program (ASP)
New Investigator Program (NIP)
Modeling Analysis and Prediction Program (MAP)
Atmospheric Composition
Atmospheric Composition Modeling and Analysis Program (ACMAP)