Associated content: 

Advanced Whole Air Sampler

32 samples/flight (ER-2); 50 samples/flight (WB57); 90 samples/flight (Global Hawk)

Updated control system with remote control capability

Fill times
–14 km 30 – 40 sec
–16 km 40 – 50 sec
–18 km 50 – 60 sec
–20 km 100 – 120 sec (estimated)

Analysis in UM lab: GC/MS; GC/FID; GC/ECD

Instrument Type: 
Point(s) of Contact: 

Harvard Herriott Hygrometer

The Harvard Herriott Hygrometer (HHH) is a multipass Herriott cell that measures water vapor via direct detection. Predicted accuracy and precision are ± 3–5% and ± 0.05 ppmv H2O, in the lower stratosphere, for a 10-s integration time, respectively. The theory and application of HHH as a water vapor instrument are laid out in the context of making accurate measurements traceable to laboratory standards. In conjunction with the Harvard Water Vapor (HWV) instrument, HHH will establish ultimate credibility via three, independent detection methods in-flight and five for laboratory and in-field calibration. A multi-detection, calibration system of this nature is beyond the scope of any in existence today. Because HHH promises such high reliability and slight margins of error, the data acquired by this instrument should minimize the uncertainty associated with natural and anthropogenic climate forcing. HHH may serve as a prototype instrument for the use of miniaturized, TDL systems as in situ quantifiers of atmospheric gases via the straightforward method of direct detection, thus extending the scientific payback of this new system.

Measurements: 
Aircraft: 
WB-57 - JSC, ER-2 - AFRC
Point(s) of Contact: 

UAS Chromatograph for Atmospheric Trace Species

The Unmanned Aircraft Systems (UAS) Chromatograph for Atmospheric Trace Species (UCATS) was designed and built for autonomous operation on remotely piloted aircraft, but has also been used on manned aircraft. It uses chromatography to separate atmospheric trace gases along narrow heated columns, followed by precise and accurate detection with electron capture detectors. There are currently three chromatography channels on UCATS, which measure nitrous oxide (N2O) and sulfur hexafluoride (SF6); CFC-11, CFC-12, CFC-113, and halon 1211; and chloroform (CHCl3) and carbon tetrachloride. On an earlier version of UCATS, with only two channels, we also measured methane, hydrogen, and carbon monoxide, along with N2O and SF6. In addition, there is a small ozone instrument and a tunable diode laser instrument for water vapor. Gas is pumped into the instruments from an inlet outside the aircraft, measured, and vented. UCATS has flown on the Altair UAS, the GV during HIPPO, the NASA Global Hawk UAS during the Global Hawk Pacific (GloPac) and ATTREX missions, where a record was set for the longest duration research flight (more than 28 hours), the DC-8 for ATom, and the ER-2 for DCOTSS. UCATS is relatively lightweight and compact, making it ideal for smaller platforms, but it is easily adaptable to a mid-size platform like the GV or Global Hawk. The data are used to measure sources and sinks of trace gases involved in climate and air quality, as well as transport through the atmosphere.

UCATS is three different instruments in one enclosure:

1. 3-channel (formerly 2-channel, up until 2020) gas chromatograph (GC)
2. Dual-beam ozone photometer (OZ)
3. Tunable diode laser (TDL) spectrometer for water vapor (WV)

Measurements: 
Aircraft: 
Altair, Global Hawk - AFRC, DC-8 - AFRC, Gulfstream V - NSF, WB-57 - JSC, ER-2 - AFRC
Point(s) of Contact: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Point(s) of Contact: 

Harvard Lyman-α Photofragment Fluorescence Hygrometer

The Harvard Water Vapor (HWV) instrument combines two independent measurement methods for the simultaneous in situ detection of ambient water vapor mixing ratios in a single duct. This dual axis instrument combines the heritage of the Harvard Lyman-α photo-fragment fluorescence instrument (LyA) with the newly designed tunable diode laser direct absorption instrument (HHH). The Lyman-α detection axis functions as a benchmark measurement, and provides a requisite link to the long measurement history of Harvard Lyman-α aboard NASA’s WB-57 and ER-2 aircraft [Weinstock et al., 1994; Hintsa et al., 1999; Weinstock et al., 2009]. The inclusion of HHH provides a second high precision measurement that is more robust than LyA to changes in its measurement sensitivity [Smith et al., in preparation]. The simultaneous utilization of radically different measurement techniques facilitates the identification, diagnosis, and constraint of systematic errors both in the laboratory and in flight. As such, it constitutes a significant step toward resolving the controversy surrounding water vapor measurements in the upper troposphere and lower stratosphere.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Harvard Integrated Cavity Output Spectroscopy

The Harvard CRDS/ICOS instrument is an absorption spectrometer that uses the relatively new and highly sensitive techniques of integrated cavity output spectroscopy (ICOS) and cavity ringdown spectroscopy (CRDS) with a high-finesse optical cavity and a cw quantum cascade laser (QCL) source. The primary spectroscopic technique employed is ICOS, in which intra-cavity absorption is measured from the steady-state output of the cavity. Light from a high power, tunable, single mode, solid-state laser source is coupled into a cavity consisting of two concave, highly reflective mirrors (R ≈ 0.9999), through which air continuously flows. The laser is scanned over a spectral region of 1–2 cm-1 containing an absorption feature, and the cavity output is detected by an LN2-cooled HgCdTe detector. The resultant output approximates an absorption spectrum with an effective pathlength of > 5 km, far greater than that of standard multipass Herriott or White cells.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - DCOTSS