Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Cloud – vegetation interaction: use of Normalized Difference Cloud Index for...

Marshak, A., Y. Knyazikhin, A. B. Davis, W. Wiscombe, and P. Pilewskie (2000), Cloud – vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness, Geophys. Res. Lett., 27, 1695-1698, doi:10.1029/1999GL010993.
Abstract: 

A new technique to retrieve cloud optical depth for broken clouds above green vegetation using ground-based zenith radiance measurements is developed. By analogy with the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Cloud Index (NDCI) is defined as a ratio between the difference and the sum of two zenith radiances measured for two narrow spectral bands in the visible and near-IR regions. The very different spectral behavior of cloud liquid water drops and green vegetation is the key physics behind the NDCI. It provides extra tools to remove the radiative effects of the 3D cloud structure. Numerical calculations based on fractal clouds and real measurements of NDCI and cloud liquid water path confirm the improvements.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Funding Sources: 
DOE/OSc/ARM