Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Atmospheric sulfur cycle in the global mdel GOCART: Model description and...

Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson (2000), Atmospheric sulfur cycle in the global mdel GOCART: Model description and global properties, J. Geophys. Res., 105, 24,661-24,687.
Abstract: 

The Georgia Tech/Goddard Global Ozone Chemistry Aerosol radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the assimilated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate, dimethylsulfide (DMS, and methanesulfonic acid (MSA) are presented in this paper. Ina normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic), and 80% is anthropogenic; the same sources contribute 33% and 67%, respectively, tot he total sulfate burden. A sulfate production efficiency of 0.41-0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount of sulfate produced tot he total amount of SO2 emitted and produced in the atmosphere. This value indicates that less than half of the SO2 entering the atmosphere contributes tot he sulfate production, the rest being removed by dry and wet depositions. Ina simulation for 1990 we estimate a total sulfate production of 39 Tg S yr-1, with 36% and 64% from in-air and in-cloud oxidation, respectively, of SO2. We also demonstrate that major volcanic eruptions, such as the Mount Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. therefore a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.

Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Interdisciplinary Science Program (IDS)
Radiation Science Program (RSP)