As a result of increasing attention paid to aerosols in climate studies, numerous global satellite aerosol products have been generated. Aerosol parameters and underlining physical processes are now incorporated in many general circulation models (GCMs) in order to account for their direct and indirect effects on the earth’s climate, through their interactions with the energy and water cycles. There exists, however, an outstanding problem that these satellite products have substantial discrepancies, that must be lowered substantially for narrowing the range of the estimates of aerosol’s climate effects. In this paper, numerous key uncertain factors in the retrieval of aerosol optical depth (AOD) are articulated for some widely used and relatively long satellite aerosol products including the AVHRR, TOMS, MODIS, MISR, and SeaWiFS. We systematically review the algorithms developed for these sensors in terms of four key elements that influence the quality of passive satellite aerosol retrieval: calibration, cloud screening, classification of aerosol types, and surface effects. To gain further insights into these uncertain factors, the NOAA AVHRR data are employed to conduct various tests, which help estimate the ranges of uncertainties incurred by each of the factors. At the end, recommendations are made to cope with these issues and to produce a consistent and unified aerosol database of high quality for both environment monitoring and climate studies.