Revised treatment of wet scavenging processes dramatically improves GEOS-Chem...

Luo, G., F. Yu, J. Schwab, C. G. L. (gluo, and albany.edu) (2019), Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States, Geosci. Model. Dev., 12, 3439-3447, doi:10.5194/gmd-12-3439-2019.
Abstract: 

The widely used community model GEOS-Chem 12.0.0 and previous versions have been recognized to significantly overestimate the concentrations of gaseous nitric acid, aerosol nitrate, and aerosol ammonium over the United States. The concentrations of nitric acid are also significantly overpredicted in most global models participating in a recent model intercomparison study. In this study, we show that most or all of this overestimation issue appears to be associated with wet scavenging processes. The replacement of constant in-cloud condensation water (ICCW) assumed in GEOS-Chem standard versions with one varying with location and time from the assimilated meteorology significantly reduces mass loadings of nitrate and ammonium during the wintertime, while the employment of an empirical washout rate for nitric acid significantly decreases mass concentrations of nitric acid and ammonium during the summertime. Compared to the standard version, GEOS-Chem with updated ICCW and washout rate significantly reduces the simulated annual mean mass concentrations of nitric acid, nitrate, and ammonium at surface monitoring network sites in the US from 2.04 to 1.03, 1.89 to 0.88, and 1.09 to 0.68 µg m−3 , respectively, in much better agreement with corresponding observed values of 0.83, 0.70, and 0.60 µg m−3 , respectively. In addition, the agreement of model-simulated seasonal variations of corresponding species with measurements is also improved. The updated wet scavenging scheme improves the skill of the model in predicting nitric acid, nitrate, and ammonium concentrations, which are important species for air quality and climate.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)