During the outbreak of the coronavirus disease 2019 (COVID-19) in China in January and February 2020, production and living activities were drastically reduced to impede the spread of the virus, which also caused a strong reduction of the emission of primary pollutants. However, as a major species of secondary air pollutant, tropospheric ozone did not reduce synchronously, but instead rose in some region. Furthermore, higher concentrations of ozone may potentially promote the rates of COVID-19 infections, causing extra risk to human health. Thus, the variation of ozone should be evaluated widely. This paper presents ozone profiles and tropospheric ozone columns from ultraviolet radiances detected by TROPOospheric Monitoring Instrument (TROPOMI) onboard Sentinel 5 Precursor (S\\5P) satellite based on the principle of optimal estimation method. We compare our TROPOMI retrievals with global ozonesonde observations, Fourier Transform Spectrometry (FTS) observation at Hefei (117.17°E, 31.7°N) and Global Positioning System (GPS) ozonesonde sensor (GPSO3) ozonesonde profiles at Beijing (116.46°E, 39.80°N). The integrated Tropospheric Ozone Column (TOC) and Stratospheric Ozone Column (SOC) show excellent agreement with validation data. We use the retrieved TOC combining with tropospheric vertical column density (TVCD) of NO2 and HCHO from TROPOMI to assess the changes of tropospheric ozone
Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China
Zhao, F., C. Liu, Z. Cai, X. Liu, J. Bak, J. Kim, Q. Hu, C. Xia, C. Zhang, Y. Sun, W. Wang, and J. Liu (2021), Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China, Science of the Total Environment, 764, 142886, doi:10.1016/j.scitotenv.2020.142886.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition
Mission
Aura- OMI