Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite...

The core information for this publication's citation.: 
Ding, J., P. Yang, R. E. Holz, S. Platnick, K. G. Meyer, M. Vaughan, Y. Hu, and M. D. King (2016), Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data Jiachen Ding,1 Ping Yang,1,* Robert E. Holz,2 Steven Platnick,3 Kerry G. Meyer,3,4 Mark, Optics Express, 24, 620-636, doi:10.1364/OE.24.000620.
Abstract: 

An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-tocloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6% and 9% for tropical and midlatitude ice clouds, respectively.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)