The ESPO website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.

Demonstration of numerical equivalence of ensemble and spectral averaging in...

Mishchenko, M., J. M. Dlugach, and N. T. Zakharova (2016), Demonstration of numerical equivalence of ensemble and spectral averaging in electromagnetic scattering by random particulate media, J. Opt. Soc. Am. A, 33, 618-624.
Abstract: 

The numerically exact superposition T -matrix method is used to model far-field electromagnetic scattering by two types of particulate object. Object 1 is a fixed configuration that consists of N identical spherical particles (with N = 200 or 400) quasi-randomly populating a spherical volume V having a median size parameter of 50. Object 2 is a true discrete random medium (DRM) comprising the same number N of particles randomly moving throughout V . The median particle size parameter is fixed at 4. We show that if Object 1 is illuminated by a quasimonochromatic parallel beam then it generates a typical speckle pattern having no resemblance to the scattering pattern generated by Object 2. However, if Object 1 is illuminated by a parallel polychromatic beam with a 10% bandwidth then it generates a scattering pattern that is largely devoid of speckles and closely reproduces the quasimonochromatic pattern generated by Object 2. This result serves to illustrate the capacity of the concept of electromagnetic scattering by a DRM to encompass fixed quasi-random particulate samples provided that they are illuminated by polychromatic light.

Research Program: 
Radiation Science Program (RSP)