Organization
MayComm Instruments
Business Address
San Dimas, CA 91773
United States
First Author Publications
-
May, R. (1998), Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O, J. Geophys. Res., 103, 19161-19172, doi:10.1029/98jd01678.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Popp, P., et al. (2006), The observation of nitric acid-containing particles in the tropical lower stratosphere, Atmos. Chem. Phys., 6, 601-611, doi:10.5194/acp-6-601-2006.
-
Jensen, E.J., et al. (2001), Prevalence of Ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation, J. Geophys. Res., 106, 17253-17266.
-
Voss, P.B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
-
Hurst, D.F., et al. (2000), Comparison of in situ N2O and CH4 measurements in the upper troposphere and lower stratosphere during STRAT and POLARIS, J. Geophys. Res., 105, 19811-19822.
-
Hintsa, E.J., et al. (1999), On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer, J. Geophys. Res., 104, 8183-8189.
-
Keim, E.R., et al. (1999), NOy partitioning from measurements of nitrogenand hydrogen radicals in the upper troposphere, Geophys. Res. Lett., 26, 51-54.
-
Scott, D.C., et al. (1999), Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms, Appl. Opt., 38, 4609-4622.
-
Jaeglé, L., et al. (1997), Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere, J. Geophys. Res., 102.D11, 13235-13253.
-
Chang, A.Y., et al. (1996), A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Tracers of atmospheric transport, Geophys. Res. Lett., 23, 2389-2392.
-
Newman, P.A., et al. (1996), Measurements of polar vortex air in the midlatitudes, J. Geophys. Res., 101, 12,879-12.
-
Fahey, D.W., et al. (1995), In situ observations of aircraft exhaust in the lower stratosphere at midlatitudes, J. Geophys. Res., 3065-3074 (manuscript in preparation).
-
Woodbridge, E.L., et al. (1995), Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ and flask measurements during AASE II, J. Geophys. Res., 100.D2, 3057-3064.
-
Jaeglé, L., et al. (1994), In Situ Measurements of the NO2/NO Ratio For Testing Atmospheric Photochemical Models, Geophys. Res. Lett., 21, 2555-2558.
-
Salawitch, R.J., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
-
Salawitch, R.J., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
-
Stimpfle, R.M., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.
-
Waugh, D., et al. (1994), Transport out of the Lower Stratospheric Arctic Vortex by Rossby Wave Breaking, J. Geophys. Res., 99.D1, 1071-1088.
-
Webster, C.R., et al. (1994), Aircraft (ER-2) Laser Infrared Absorption Spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3, Appl. Opt., 33, 454-472.
-
Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
-
Salawitch, R.J., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.