Organization
NASA Langley Research Center
Email
Business Phone
Work
(757) 864-8564
Business Address
Atmospheric Sciences Research
NASA Langley Research Center
Mail Stop 420
Hampton, VA 23681
United States
Website
First Author Publications
-
Xu, K., and A. Cheng (2013), Evaluating Low-Cloud Simulation from an Upgraded Multiscale Modeling Framework Model. Part I: Sensitivity to Spatial Resolution and Climatology, J. Climate, 26, 5717-5740, doi:10.1175/JCLI-D-12-00200.1.
-
Xu, K., and A. Cheng (2013), Evaluating Low-Cloud Simulation from an Upgraded Multiscale Modeling Framework Model. Part II: Seasonal Variations over the Eastern Pacific, J. Climate, 26, 5741-5760, doi:10.1175/JCLI-D-12-00276.1.
-
Xu, K., et al. (2010), Cloud-Resolving Simulation of Low-Cloud Feedback to an Increase in Sea Surface Temperature, J. Atmos. Sci., 67, 730-748, doi:10.1175/2009JAS3239.1.
-
Xu, K. (2009), Evaluation of Cloud Physical Properties of ECMWF Analysis and Re-Analysis (ERA) against CERES Tropical Deep Convective Cloud Object Observations, Mon. Wea. Rev., 137, 207-223, doi:10.1175/2008MWR2633.1.
-
Xu, K., et al. (2008), Statistical Analyses of Satellite Cloud Object Data from CERES. Part IV: Boundary Layer Cloud Objects during 1998 El Niño, J. Climate, 21, 1500-1521, doi:10.1175/2007JCLI1710.1.
-
Xu, K., et al. (2007), Statistical Analyses of Satellite Cloud Object Data from CERES. Part II: Tropical Convective Cloud Objects during 1998 El Niño and Evidence for Supporting the Fixed Anvil Temperature Hypothesis, J. Climate, 20, 819-842, doi:10.1175/JCLI4069.1.
-
Xu, K. (2006), Using the Bootstrap Method for a Statistical Significance Test of Differences between Summary Histograms, Mon. Wea. Rev., 134, 1442-1452.
-
Xu, K., et al. (2005), Statistical Analyses of Satellite Cloud Object Data from CERES. Part I: Methodology and Preliminary Results of the 1998 El Niño/2000 La Niña, J. Climate, 18, 2497-2514.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Neggers, R.A.J., et al. (2017), Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions, J. Adv. Modeling Earth Syst., 9, 2385-2412, doi:10.1002/2017MS001064.
-
Painemal, D., et al. (2017), Entrainment rate diurnal cycle in marine stratiform clouds estimated from geostationary satellite retrievals and a meteorological forecast model, Geophys. Res. Lett., 44, doi:10.1002/2017GL074481.
-
Cheng, A., and K. Xu (2014), An explicit representation of vertical momentum transport in a multiscale modeling frameworkthrough its 2-D cloud-resolving model component, J. Geophys. Res., 119, 2356-2374, doi:10.1002/2013JD021078.
-
Fan, J., et al. (2014), Development of a Scale-Aware Cumulus Parameterization – Part I: Evaluation of Model Simulations with Spectral-Bin Microphysics and Comparisons with Bulk Microphysics, J. Geophys. Res.(submitted).
-
Liu, Y., et al. (2014), Development of a Scale-Aware Cumulus Parameterization – Part II: Analysis of Cloud-Resolving Model Simulations, J. Geophys. Res.(submitted).
-
Painemal, D., et al. (2014), Mean Structure and diurnal cycle of Southeast Atlantic boundary layer clouds: Insights from satellite observations and multiscale modeling framework simulations, J. Climate-46 (submitted).
-
Blossey, P.N., et al. (2013), Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison, Journal Of Advances In Modeling Earth Systems, 5, 1-25, doi:10.1002/10.1002/jame.20025.
-
Cheng, A., and K. Xu (2013), Evaluating Low-Cloud Simulation from an Upgraded Multiscale Modeling Framework Model. Part III: Tropical and Subtropical Cloud Transitions over the Northern Pacific, J. Climate, 26, 5761-5781, doi:10.1175/JCLI-D-12-00650.1.
-
Cheng, A., and K. Xu (2013), Diurnal variability of low clouds in the Southeast Pacific simulated by a multiscale modeling framework model, J. Geophys. Res., 118, 9191-9208, doi:10.1002/jgrd.50683.
-
Woolnough, S.J., et al. (2013), Modelling convective processes during the suppressed phase of a Madden–Julian oscillation: Comparing single-column models with cloud-resolving models, Q. J. R. Meteorol. Soc., 136, 333-353.
-
Zhang, ., et al. (2013), CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models, J. Adv. Modeling Earth Syst., 5, 1-17, doi:10.1002/2013MS000246.
-
Cheng, A., et al. (2012), Impact of a cloud thermodynamic phase parameterization based on CALIPSO observations on climate simulation, J. Geophys. Res., 117, D09103, doi:10.1029/2011JD017263.
-
Cheng, A., and K. Xu (2011), Improved low‐cloud simulation from a multiscale modeling framework with a third‐order turbulence closure in its cloud‐resolving model component, J. Geophys. Res., 116, D14101, doi:10.1029/2010JD015362.
-
Eitzen, Z.A., et al. (2011), An Estimate of Low-Cloud Feedbacks from Variations of Cloud Radiative and Physical Properties with Sea Surface Temperature on Interannual Time Scales, J. Climate, 24, 1106-1121, doi:10.1175/2010JCLI3670.1.
-
Kato, S., et al. (2011), Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.
-
Zhou, Y.P., et al. (2011), Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data, J. Geophys. Res., 116, D09101, doi:10.1029/2010JD015197.
-
Hu, Y., et al. (2010), Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, D00H34, doi:10.1029/2009JD012384.
-
Su, W., et al. (2010), Comparison of the tropical radiative flux and cloud radiative effect profiles in a climate model with Clouds and the Earth’s Radiant Energy System (CERES) data, J. Geophys. Res., 115, D01105, doi:10.1029/2009JD012490.
-
Su, W., et al. (2010), An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis, J. Geophys. Res., 115, D18219, doi:10.1029/2010JD013948.
-
Cheng, A., and K. Xu (2009), A PDF-Based Microphysics Parameterization for Simulation of Drizzling Boundary Layer Clouds, J. Atmos. Sci., 66, 2317-2334, doi:10.1175/2009JAS2944.1.
-
Eitzen, Z.A., et al. (2009), Cloud and Radiative Characteristics of Tropical Deep Convective Systems in Extended Cloud Objects from CERES Observations, J. Climate, 22, 5983-6000, doi:10.1175/2009JCLI3038.1.
-
Hong, G., et al. (2009), Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models, J. Climate, 22, 6287-6312, doi:10.1175/2009JCLI2844.1.
-
Klein, S.A., et al. (2009), Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single-layer cloud, Q. J. R. Meteorol. Soc., 135, 979-1002, doi:10.1002/qj.416.
-
Cheng, A., and K. Xu (2008), Simulation of Boundar y-Layer Cumulus and Stratocumulus Clouds Using a Cloud-Resolving Model with Low- and Third-order Turbulence Closures, Journal of Meteor. Soc. Japan, 86A, 67-86.
-
Eitzen, Z.A., and K. Xu (2008), Sensitivity of a Large Ensemble of Tropical Convective Systems to Changes in the Thermodynamic and Dynamic Forcings, J. Atmos. Sci., 65, 1773-1794, doi:10.1175/2007JAS2446.1.
-
Eitzen, Z.A., et al. (2008), Statistical Analyses of Satellite Cloud Object Data from CERES. Part V: Relationships between Physical Properties of Marine Boundary Layer Clouds, J. Climate, 21, 6668-6688, doi:10.1175/2008JCLI2307.1.
-
Luo, Y., et al. (2008), Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations, J. Atmos. Sci., 65, 1285-1303, doi:10.1175/2007JAS2467.1.
-
Luo, Y., et al. (2008), Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments, J. Geophys. Res., 113, D12208, doi:10.1029/2007JD009563.
-
Lin, B., et al. (2007), Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations, Geophys. Res. Lett., 34, L14804, doi:10.1029/2007GL029768.
-
Luo, Y., et al. (2007), Statistical Analyses of Satellite Cloud Object Data from CERES. Part III: Comparison with Cloud-Resolving Model Simulations of Tropical Convective Clouds, J. Atmos. Sci., 64, 762-785, doi:10.1175/JAS3871.1.
-
Lin, B., et al. (2006), The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite, J. Climate, 19, 5745-5761.
-
Eitzen, Z.A., and K. Xu (2005), A statistical comparison of deep convective cloud objects observed by an Earth Observing System satellite and simulated by a cloud-resolving model, J. Geophys. Res., 110, D15S14, doi:10.1029/2004JD005086.
-
Chambers, L., et al. (2002), Reply, J. Climate, 15, 2716-2717.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.