Organization
University of Maryland
First Author Publications
-
Pickering, K.E., et al. (2024), Lightning NOx in the 29–30 May 2012 Deep Convective Clouds and Chemistry (DC3) Severe Storm and Its Downwind Chemical Consequences, J. Geophys. Res., 129, e2023JD039439., doi:10.1029/2023JD039439.
-
Pickering, K.E., et al. (2016), Estimates of lightning NOx production based on OMI NO2 observations over the Gulf of Mexico, J. Geophys. Res., 121, 8668-8691, doi:10.1002/2015JD024179.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Bucsela, E., et al. (2024), This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Midlatitude Lightning NOx Production Efficiency Infer, J. Geophys. Res., 124, 13,475-13,497, doi:10.1029/2019JD030561.
-
Cummings, K.A., et al. (2024), Evaluation of Lightning Flash Rate Parameterizations in a Cloud‐Resolved WRF‐Chem Simulation of the 29-30 May 2012 Oklahoma Severe Supercell System Observed, J. Geophys. Res., 129, e2023JD039492., doi:10.1029/2023JD039492.
-
Allen, D.J., et al. (2021), Observations of Lightning NOx Production From Tropospheric Monitoring Instrument Case Studies Over the United States, J. Geophys. Res., 126, e2020JD034174, doi:10.1029/2020JD034174.
-
Allen, D.J., et al. (2021), Observations of Lightning NOx Production From GOES-R Post Launch Test Field Campaign Flights, J. Geophys. Res., 126, e2020JD033769, doi:10.1029/2020JD033769.
-
Allen, D.J., et al. (2019), Lightning NOx Production in the Tropics as Determined Using OMI NO2 Retrieval and WWLLN Stroke Data, J. Geophys. Res., 124, 13,498-13,518, doi:10.1029/2018JD029824.
-
Duncan, B., et al. (2016), A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014), J. Geophys. Res., 121, doi:10.1002/2015JD024121.
-
Barth, M.C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
-
Lamsal, L.N., et al. (2015), U.S. NO2 trends (2005e2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130-143, doi:10.1016/j.atmosenv.2015.03.055.
-
Liu, C., et al. (2015), Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign, Atmos. Meas. Tech., 8, 751-759, doi:10.5194/amt-8-751-2015.
-
Barth, M., et al. (2014), The Deep Convective Clouds and Chemistry (DC3) Field Campaign,, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-13-00290.1.
-
Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
-
Eck, T.F., et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633-11656, doi:10.5194/acp-14-11633-2014.
-
He, H., et al. (2014), An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations, Atmos. Environ., 85, 18-30, doi:10.1016/j.atmosenv.2013.11.039.
-
Lamsal, L.N., et al. (2014), Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609, doi:10.5194/acp-14-11587-2014.
-
Shi, J.J., et al. (2014), Implementation of an aerosol–cloud-microphysics–radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period, Q. J. R. Meteorol. Soc., 140, 2158-2175, doi:10.1002/qj.2286.
-
Cummings, K.A., et al. (2013), Cloud-resolving chemistry simulation of a Hector thunderstorm, Atmos. Chem. Phys., 13, 2757-2777, doi:10.5194/acp-13-2757-2013.
-
Allen, D., et al. (2012), Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model, Atmos. Chem. Phys., 12, 1737-1758, doi:10.5194/acp-12-1737-2012.
-
Fishman, J., et al. (2012), The United States’ Next Generation Of Atmospheric Composition And Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Am. Meteorol. Soc., 1547-1566.
-
Fishman, J., et al. (2012), The United States’ next generation of atmospheric composition and coastal ecosystem measurements NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission, Bull. Amer. Meteor. Soc., 93, 1547-1566.
-
Loughner, C., et al. (2012), Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results, J. Appl. Meteor. Climat., 51, 1775-1793, doi:10.1175/JAMC-D-11-0228.1.
-
Yuan, T., et al. (2012), Aerosol indirect effect on tropospheric ozone via lightning, J. Geophys. Res., 117, D18213, doi:10.1029/2012JD017723.
-
Loughner, C., et al. (2011), Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation, Atmos. Environ., 45, 4060-4072, doi:10.1016/j.atmosenv.2011.04.003.
-
Martini, M., et al. (2011), The impact of North American anthropogenic emissions and lightning on long‐range transport of trace gases and their export from the continent during summers 2002 and 2004, J. Geophys. Res., 116, D07305, doi:10.1029/2010JD014305.
-
Natraj, V., et al. (2011), Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmos. Environ., 45, 7151-7165, doi:10.1016/j.atmosenv.2011.09.014.
-
Yegorova, ., et al. (2011), Characterization of an eastern U.S. severe air pollution episode using WRF/Chem, J. Geophys. Res., 116, D17306, doi:10.1029/2010JD015054.
-
Yuan, T., et al. (2011), Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.
-
Allen, D., et al. (2010), Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res., 115, D22301, doi:10.1029/2010JD014062.
-
Bucsela, E., et al. (2010), Lightning‐generated NOx seen by the Ozone Monitoring Instrument during NASA’s Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J10, doi:10.1029/2009JD013118.
-
Duncan, B., et al. (2010), Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213-2223, doi:10.1016/j.atmosenv.2010.03.010.
-
Hansen, A.E., et al. (2010), Vertical distributions of lightning sources and flashes over Kennedy Space Center, Florida, J. Geophys. Res., 115, D14203, doi:10.1029/2009JD013143.
-
Morris, G.A., et al. (2010), Observations of ozone production in a dissipating tropical convective cell during TC4, Atmos. Chem. Phys., 10, 11189-11208, doi:10.5194/acp-10-11189-2010.
-
Ott, L., et al. (2010), Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880.
-
Toon, O.B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
-
Yoshida, ., et al. (2010), The impact of the 2005 Gulf hurricanes on pollution emissions as inferred from Ozone Monitoring Instrument (OMI) nitrogen dioxide, Atmos. Environ., 44, 1443-1448, doi:10.1016/j.atmosenv.2010.01.037.
-
Halland, J.J., et al. (2009), Identifying convective transport of carbon monoxide by comparing remotely sensed observations from TES with cloud modeling simulations, Atmos. Chem. Phys., 9, 4279-4294, doi:10.5194/acp-9-4279-2009.
-
Ott, L., et al. (2009), Analysis of convective transport and parameter sensitivity in a single column version of the Goddard Earth Observation System, Version 5, General Circulation Model, J. Atmos. Sci., 66, doi:10.1175/2008JAS2694.1.
-
Witte, J.C., et al. (2009), Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophys. Res. Lett., 36, L17803, doi:10.1029/2009GL039236.
-
Fried, A., et al. (2008), Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign, J. Geophys. Res., 113, D17306, doi:10.1029/2007JD009760.
-
Bertram, T., et al. (2007), Direct Measurements of the Convective Recycling of the Upper Troposphere, Science, 315, 816-820, doi:10.1126/science.1134548.
-
Thompson, A.M., et al. (2007), Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 2. Tropospheric ozone budgets and variability over northeastern North America, J. Geophys. Res., 112, D12S13, doi:10.1029/2006JD007670.
-
Cooper, O.R., et al. (2006), Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network, J. Geophys. Res., 111, D24S05, doi:10.1029/2006JD007306.
-
Ridley, B., et al. (2004), Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere, J. Geophys. Res., 109, D17305, doi:10.1029/2004JD004769.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.