Organization
Florida State University
Email
Business Address
1017 Academic Way
Earth, Ocean, and Atmospheric Science
Tallahassee, FL 32306
United States
Website
First Author Publications
-
Holmes, C., et al. (2019), The Role of Clouds in the Tropospheric NOx Cycle: A New Modeling Approach for Cloud Chemistry and Its Global Implications, Geophys. Res. Lett., 46, doi:10.1029/2019GL081990.
-
Holmes, C. (2018), Methane Feedback on Atmospheric Chemistry: Methods, Models, and Mechanisms, J. Adv. Modeling Earth Syst., 10, doi:10.1002/2017MS001196.
-
Holmes, C., et al. (2014), The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry, Atmos. Chem. Phys., 14, 6801-6812, doi:10.5194/acp-14-6801-2014.
-
Holmes, C., et al. (2013), Uncertainties in climate assessment for the case of aviation NO, Proc. Natl. Acad. Sci., 108, 10997-11002, doi:10.1073/pnas.1101458108.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Decker, Z.D.-.N., et al. (2024), Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol, Geophys. Res. Lett., 51, e2023GL107273, doi:10.1029/2023GL107273.
-
Pagonis, D.J., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
-
Saide Peralta, P.E., et al. (2023), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
-
Bourgeois, I.E.V., et al. (2022), Comparison of airborne measurements of NO, NO2, HONO, NOy , and CO during FIREX-AQ, Atmos. Meas. Tech., 15, 4901-4930, doi:10.5194/amt-15-4901-2022.
-
Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Saide Peralta, P.E., et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
-
Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Decker, Z.D.-.N., et al. (2021), Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke, Environ. Sci. Technol., 55, 15646-15657, doi:10.1021/acs.est.1c03803.
-
Decker, Z.D.-.N., et al. (2021), Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293-16317, doi:10.5194/acp-21-16293-2021.
-
Li, F., et al. (2020), A preliminary evaluation of GOES-16 active fire product using Landsat-8 T and VIIRS active fire data, and ground-based prescribed fire records ⁎, Remote Sensing of Environment, 237, 111600, doi:10.1016/j.rse.2019.111600.
-
Ronan, A.C., et al. (2020), Have improvements in ozone air quality reduced ozone uptake into plants?, Elementa: Science of the Anthropocene, 8, doi:10.1525/elementa.399.
-
Nowell, H.K., et al. (2018), A New Picture of Fire Extent, Variability, and Drought Interaction in Prescribed Fire Landscapes: Insights From Florida Government Records, Geophys. Res. Lett., 45, doi:10.1029/2018GL078679.
-
Schnell, J.L., et al. (2014), Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721-7739, doi:10.5194/acp-14-7721-2014.
-
Prather, M.J., and C. Holmes (2013), A perspective on time: loss frequencies, time scales and lifetimes, Environ. Chem., 10, 73-79.
-
Prather, M.J., et al. (2012), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi:10.1029/2012GL051440.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.