Organization
Texas A&M University
Email
Business Phone
Work
(979) 862-1427
Business Address
Department of Atmospheric Sciences
TAMU 3150
College Station, TX 77843
United States
First Author Publications
-
Dessler, A., et al. (2016), Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century, Geophys. Res. Lett., 43, 2323-2329, doi:10.1002/2016GL067991.
-
Dessler, A., and S. Davis (2010), Trends in tropospheric humidity from reanalysis systems, J. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.
-
Dessler, A. (2010), A Determination of the Cloud Feedback from Climate Variations over the Past Decade, Science, 330, 1523-1527.
-
Dessler, A. (2009), Clouds and water vapor in the Northern Hemisphere summertime stratosphere, J. Geophys. Res., 114, D00H09, doi:10.1029/2009JD012075.
-
Dessler, A., and S. Wong (2009), Estimates of the Water Vapor Climate Feedback during El Niño–Southern Oscillation, J. Climate, 22, 6404-6412, doi:10.1175/2009JCLI3052.1.
-
Dessler, A., et al. (2007), Effects of convective ice lofting on H2O and HDO in the tropical tropopause layer, J. Geophys. Res., 112, D18309, doi:10.1029/2007JD008609.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Schoeberl, M.R., et al. (2024), The Estimated Climate Impact of the Hunga Tonga-Hunga Ha'apai Eruption Plume, Geophys. Res. Lett..
-
Schoeberl, M.R., et al. (2022), Cloud and Aerosol Distributions From SAGE III/ISS Observations, J. Geophys. Res..
-
Wang, X., and A. Dessler (2020), The response of stratospheric water vapor to climate change driven by different forcing agents, Atmos. Chem. Phys., 20, 13267-13282, doi:10.5194/acp-20-13267-2020.
-
Yu, W., et al. (2020), Influence of convection on stratospheric water vapor in the North American monsoon region, Atmos. Chem. Phys., 20, 12153-12161, doi:10.5194/acp-20-12153-2020.
-
Schoeberl, M.R., et al. (2019), Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer, J. Geophys. Res., 124, doi:10.1029/2018JD029849.
-
Wang, ., et al. (2019), Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer, Atmos. Chem. Phys., 19, 14621-14636, doi:10.5194/acp-19-14621-2019.
-
Schoeberl, M.R., et al. (2018), Convective Hydration of the Upper Troposphere and Lower Stratosphere, J. Geophys. Res., 123, 4583-4593, doi:.org/10.1029/2018JD028286.
-
Ye, ., et al. (2018), Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor, Atmos. Chem. Phys., 18, 4425-4437, doi:10.5194/acp-18-4425-2018.
-
Smalley, ., et al. (2017), Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry–climate models, Atmos. Chem. Phys., 17, 8031-8044, doi:10.5194/acp-17-8031-2017.
-
Huang, X., et al. (2013), A Radiative–Convective Equilibrium Perspective of Weakening of the Tropical Walker Circulation in Response to Global Warming, J. Climate, 26, 1643-1653, doi:10.1175/JCLI-D-12-00288.1.
-
Schoeberl, M.R., et al. (2013), Modeling upper tropospheric and lower stratospheric water vapor anomalies, Atmos. Chem. Phys., 13, 7783-7793, doi:10.5194/acp-13-7783-2013.
-
Schoeberl, M.R., et al. (2012), Simulation of stratospheric water vapor and trends using three reanalyses, Atmos. Chem. Phys., 12, 6475-6487, doi:10.5194/acp-12-6475-2012.
-
Wang, C., et al. (2012), A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-micron channels, Geophys. Res. Lett., 39, L24806, doi:10.1029/2012GL053854.
-
Wang, T., and A. Dessler (2012), Analysis of cirrus in the tropical tropopause layer from CALIPSO and MLS data: A water perspective, J. Geophys. Res., 117, D04211, doi:10.1029/2011JD016442.
-
Zhou, C., et al. (2012), Study of Horizontally Oriented Ice Crystals with CALIPSO Observations and Comparison with Monte Carlo Radiative Transfer Simulations, J. Appl. Meteor. Climat., 51, 1426-1439, doi:10.1175/JAMC-D-11-0265.1.
-
Schoeberl, M.R., and A. Dessler (2011), Dehydration of the stratosphere, Atmos. Chem. Phys., 11, 8433-8446, doi:10.5194/acp-11-8433-2011.
-
Yang, P., et al. (2010), Contrails And Induced Cirrus: Optics and Radiation, Bull. Am. Meteorol. Soc., 473-478.
-
Casey, S., et al. (2009), Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua, J. Appl. Meteor. Climat., 48, 1831-1842, doi:10.1175/2009JAMC2099.1.
-
Wong, S., et al. (2008), Long-term variability in Saharan dust transport and its link to North Atlantic sea surface temperature, Geophys. Res. Lett., 35, L07812, doi:10.1029/2007GL032297.
-
Hanisco, T.F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
-
Lee, J., et al. (2006), The Influence of Thermodynamic Phase on the Retrieval of Mixed-Phase Cloud Microphysical and Optical Properties in the Visible and Near-Infrared Region, IEEE Geosci. Remote Sens. Lett., 3, 287-291, doi:10.1109/LGRS.2006.864374.
-
Wong, S., et al. (2006), Principal component analysis of the evolution of the Saharan air layer and dust transport: Comparisons between a model simulation and MODIS and AIRS retrievals, J. Geophys. Res., 111, D20109, doi:10.1029/2006JD007093.
-
Minschwaner, K., et al. (1996), Bulk properties of isentropic mixing into the tropics in the lower stratosphere, J. Geophys. Res., 101, 9433-9439.
-
Fahey, D.W., et al. (1995), In situ observations of aircraft exhaust in the lower stratosphere at midlatitudes, J. Geophys. Res., 3065-3074 (manuscript in preparation).
-
Hintsa, E.J., et al. (1994), SPADE H2O Measurements and the Seasonal Cycle of Stratospheric Water Vapor, Geophys. Res. Lett., 21, 2559-2562.
-
Salawitch, R.J., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
-
Salawitch, R.J., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.