Validation of the Aura Microwave Limb Sounder ClO measurements

Santee, M.L., A. Lambert, B. Read, N.J. Livesey, G.L. Manney, R.E. Cofield, D.T. Cuddy, W.H. Daffer, B. Drouin, L. Froidevaux, R.A. Fuller, R.F. Jarnot, B. Knosp, V.S. Perun, W.V. Snyder, P. Stek, R.P. Thurstans, P.A. Wagner, J.W. Waters, B. Connor, J. Urban, D. Murtagh, P. Ricaud, B. Barret, A. Kleinböhl, J. Kuttippurath, H. Küllmann, M. von Hobe, G. Toon, and R.A. Stachnik (2008), Validation of the Aura Microwave Limb Sounder ClO measurements, J. Geophys. Res., 113, D15S22, doi:10.1029/2007JD008762.
Abstract

We assess the quality of the version 2.2 (v2.2) ClO measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS v2.2 ClO data are scientifically useful over the range 100 to 1 hPa, with a single-profile precision of ~0.1 ppbv throughout most of the vertical domain. Vertical resolution is ~3– 4 km. Comparisons with climatology and correlative measurements from a variety of different platforms indicate that both the amplitude and the altitude of the peak in the ClO profile in the upper stratosphere are well determined by MLS. The latitudinal and seasonal variations in the ClO distribution in the lower stratosphere are also well determined, but a substantial negative bias is present in both daytime and nighttime mixing ratios at retrieval levels below (i.e., pressures larger than) 22 hPa. Outside of the winter polar vortices, this negative bias can be eliminated by subtracting gridded or zonal mean nighttime values from the individual daytime measurements. In studies for which knowledge of lower stratospheric ClO mixing ratios inside the winter polar vortices to better than a few tenths of a ppbv is needed, however, day À night differences are not recommended and the negative bias must be corrected for by subtracting the estimated value of the bias from the individual measurements at each affected retrieval level.

PDF of Publication
Download from publisher's website
Mission
Aura

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.