Validation of TES methane with HIPPO aircraft observations: implications for...

Wecht, K. J., D. J. Jacob, S. C. Wofsy, E. A. Kort, J. Worden, S. S. Kulawik, D. Henze, M. Kopacz, and V. Payne (2012), Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832, doi:10.5194/acp-12-1823-2012.

We validate satellite methane observations from the Tropospheric Emission Spectrometer (TES) with 151 aircraft vertical profiles over the Pacific from the HIAPER Poleto-Pole Observation (HIPPO) program. We find that a collocation window of ±750 km and ±24 h does not introduce significant error in comparing TES and aircraft profiles. We validate both the TES standard product (V004) and an experimental product with two pieces of information in the vertical (V005). We determine a V004 mean bias of 65.8 ppb and random instrument error of 43.3 ppb. For V005 we determine a mean bias of 42.3 ppb and random instrument error of 26.5 ppb in the upper troposphere, and mean biases (random instrument errors) in the lower troposphere of 28.8 (28.7) and 16.9 (28.9) ppb at high and low latitudes respectively. Even when V005 cannot retrieve two pieces of information it still performs better than V004. An observation system simulation experiment (OSSE) with the GEOS-Chem chemical transport model (CTM) and its adjoint shows that TES V004 has only limited value for constraining methane sources. Our successful validation of V005 encourages its production as a standard retrieval to replace V004.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)