This paper reports on the comparison of two latest versions (collections 4 and 5) of ice cloud products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The differences between the bulk optical properties of ice clouds used in collections 4 and 5 and the relevant impact on simulating the correlation of the bidirectional reflection functions at two MODIS bands centered at 0.65 (or 0.86) and 2.13 µm are investigated. The level-3 MODIS ice cloud properties (specifically, ice cloud fraction, optical thickness, and effective particle size in this paper) from the collection 4 and 5 datasets are compared for a tropical belt of 30◦ S–30◦ N. Furthermore, the impact of the differences between the MODIS collection 4 and 5 ice cloud products on the simulation of the radiative forcing of these clouds is investigated. Over the tropics, the averaged ice cloud fraction from collection 5 is 1.1% more than the collection 4 counterpart, the averaged optical thickness from collection 5 is 1.2 larger than the collection 4 counterpart, and the averaged effective particle radius from collection 5 is 1.8 µm smaller than the collection 4 counterpart. Moreover, the magnitude of the differences between collection 5 and 4 ice cloud properties also depends on the surface characteristics, i.e., over land or over ocean. The differences of these two datasets (collections 4 and 5) of cloud properties can have a significant impact on the simulation of the radiative forcing of ice clouds. In terms of total (longwave plus shortwave) cloud radiative forcing, the differences between the collection 5 and 4 results are distributed primarily between −60 and 20 W · m−2 but peak at 0 W · m−2 .
Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations
Yang, P., L. Zhang, G. Hong, S. Nasiri, B.A. Baum, H. Huang, M.D. King, and S.E. Platnick (2007), Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations, IEEE Trans. Geosci. Remote Sens., 45, 2886-2899, doi:10.1109/TGRS.2007.898276.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Radiation Science Program (RSP)
Mission
Aqua-MODIS
Terra-MODIS