Associated content: 

Langley Aerosol Research Group Experiment

Langley Aerosol Research Group Experiment (LARGE).  The "classic" suite of instrumenation measures in-situ aerosol micrphysical and optical properties. The package can be tailored for specific science objectives and to operate on a variety of aircraft. Depending on the aircraft, measurments are made from either a shrouded single-diffuser "Clarke" inlet, from a BMI (Brechtel Manufacturing Inc.) isokinetic inlet, or from a HIML inlet. Primary measurements include:

1.) total and non-volatile particle concentrations (3nm and 10nm nominal size cuts),
2.) dry size distributions from 3nm to 5µm diameter using a combination of mobilty-optical-aerodynamic sizing techniques,
3.) dry and humidified scattering coefficients (at 450, 550, and 700nm wavelength), and
4.) dry absorption coefficients (470, 532, and 670nm wavelength). 

LARGE derived products include particle size statistics (integrated number, surface area, and volume concentrations for ultrafine, accumulation, and coarse modes), dry and ambient aerosol extinction coefficients, single scattering albedo, angstrom exponent coefficients, and scattering hygroscopicity parameter f(RH).

Aircraft: 
DC-8 - AFRC, C-130 - WFF, P-3 Orion - WFF, HU-25 Falcon - LaRC, King Air B-200 - LaRC
Point(s) of Contact: 

Langley Wideband Integrated Bioaerosol Sensor

Wideband Integrated Bioaerosol Sensor (WIBS-4A) - Droplet Measurement Technologies.  Dectection of Fluorescent Biological Aerosol Particle (FBAP) number concentrations.  Single particle analysis using dual wavelength (280nm and 370nm by xenon lamps) excitation on two parallel broadband visible-wavelength detectors (310-400nm and 420-650nm). Particles are classified by a combination of fluorescence excitation and emission characteristics, as well as their optical size measured by forward-scattering using a 635nm continuous-wave diode laser.    

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Langley Single Particle Soot Photometer

Droplet Measurement Technologies (DMT) Single Particle Soot Photometer (SP2). Signle particle measurement of accumulation-mode refractory black carbon (rBC) mass concentrations based on laser-induced incancescence.   

Instrument Type: 
Aircraft: 
P-3 Orion - WFF, C-130 - WFF
Point(s) of Contact: 

Solar Spectral Flux Radiometer

In early 2000, the Ames Atmospheric Radiation Group completed the design and development of an all new Solar Spectral Flux Radiometer (SSFR). The SSFR is used to measure solar spectral irradiance at moderate resolution to determine the radiative effect of clouds, aerosols, and gases on climate, and also to infer the physical properties of aerosols and clouds. Additionally, the SSFR was used to acquire water vapor spectra using the Ames 25-meter base-path multiple-reflection absorption cell in a laboratory experiment. The Solar Spectral Flux Radiometer is a moderate resolution flux (irradiance) spectrometer with 8-12 nm spectral resolution, simultaneous zenith and nadir viewing. It has a radiometric accuracy of 3% and a precision of 0.5%. The instrument is calibrated before and after every experiment, using a NIST-traceable lamp. During field experiments, the stability of the calibration is monitored before and after each flight using portable field calibrators. Each SSFR consists of 2 light collectors, which are either fix-mounted to the aircraft fuselage, or on a stabilizing platform which counteracts the movements of the aircraft. Through fiber optic cables, the light collectors are connected to 2 identical pairs of spectrometers, which cover the wavelength range from (a) 350 nm-1000 nm (Zeiss grating spectrometer with Silicon linear diode array) and (b) 950 nm - 2150 nm (Zeiss grating spectrometer with InGaAs linear diode array). Each spectrometer pair covers about 95% of the incoming solar incident irradiance spectrum.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Diode Laser Hygrometer

The DLH has been successfully flown during many previous field campaigns on several aircraft, most recently ATom, KORUS-AQ, and SEAC4RS (DC-8), POSIDON (WB-57), CARAFE (Sherpa), DISCOVER-AQ (P-3), and ATTREX (Global Hawk). This sensor measures water vapor (H2O(v)) via absorption by one of three strong, isolated lines in the (101) combination band near 1.4 μm and is comprised of a compact laser transceiver mounted to a DC-­8 window plate and a sheet of high grade retroflecting road sign material applied to an outboard DC‐8 engine housing to complete the optical path. Using differential absorption detection techniques, H2O(v) is sensed along the 28.5m external path negating any potential wall or inlet effects inherent in extractive sampling techniques. A laser power normalization scheme enables the sensor to accurately measure water vapor even when flying through clouds. An algorithm calculates H2O(v) concentration based on the differential absorption signal magnitude, ambient pressure, and temperature, and spectroscopic parameters that are measured in the laboratory. Preliminary water vapor mixing ratio and derived relative humidities are provided in real-time to investigators aboard the DC-8.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Continuous Flow Streamwise Thermal Gradient CCN Counter

Developed by Droplet Measurement Technologies, the CFSTGC is based on a concept by Roberts and Nenes [2005]. The instrument counts the fraction of aerosol particles that become droplets when exposed to a given water vapor supersaturation (RH > 100%).

As with all CCN counters, a temperature gradient is applied to produce a supersaturation of water vapor. However, the mechanism for generating supersaturation is not the same for all CCN counters. For example, for continuous flow parallel plate diffusion chambers, the temperature gradient is perpendicular to the flow, and supersaturation is a result of the nonlinear dependence of vapor pressure upon temperature. The same mechanism applies for static diffusion cloud chambers, where there is no flow at all.

However, as the name implies, for the Continuous Flow Streamwise Thermal Gradient CCN Counter, the temperature gradient is in the streamwise direction (maintained by thermoelectric coolers). In this case, supersaturation results as a consequence of the greater rate of mass transfer over heat transfer.

With laminar flow, heat and water vapor are transferred to the centerline of the column from the walls only by diffusion.

Since molecular diffusivity is greater than thermal diffusivity, the distance downstream that a water molecule travels before reaching the centerline is less than the distance the heat travels downstream before reaching the centerline. If you pick a point at the centerline, the heat originated from a greater distance upstream than the water vapor.

There are four facts that are necessary to explain how supersaturation is generated within the CFSTGC:

1) Assuming that the inner surface of the column is saturated with water vapor at all points, since the temperature is greater at point B than at point A, the water vapor partial pressure is also greater at point B than at point A.

2) The actual partial pressure of water vapor at point C is equal to the partial pressure of water vapor at point B.

3) However, since the temperature at point C is the same as at point A, the equilibrium water vapor pressure at point C is equal to the water vapor partial pressure at point A.

4) The saturation ratio is the ratio between the actual partial pressure of water vapor and the equilibrium vapor pressure. This is equivalent to the partial pressure at point B divided by the partial pressure at point A, which is always greater than one. Thus supersaturation is generated through a dynamic equilibrium.

Instrument Type: 
Measurements: 
Aircraft: 
Balloon, P-3 Orion - WFF, C-130 - WFF, DC-8 - AFRC, HU-25 Falcon - LaRC, C-130H - WFF
Point(s) of Contact: 

BroadBand Radiometers

The Broadband Radiometers (BBR) consist of modified Kipp & Zonen CM-22 pyranometers (to measure solar irradiance) and CG-4 pyrgeometers (to measure IR irradiance) (see http://www.kippzonen.com/). The modifications to make these instruments more suitable for aircraft use include new instrument housings and amplification of the signal at the sensor. The instruments are run in current-loop mode to minimize the effects of noise in long signal cables. The housing is sealed and evacuated to prevent condensation or freezing inside the instrument. Each BBR has the following properties: Field-of-view: Hemispheric Temperature Range: -65C to +80C Estimated Accuracy: 3-5% Data Rate: 10Hz

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Advanced Microwave Precipitation Radiometer

The AMPR is a total power passive microwave radiometer producing calibrated brightness temperatures (TB) at 10.7, 19.35, 37.1, and 85.5 GHz. These frequencies are sensitive to the emission and scattering of precipitation-size ice, liquid water, and water vapor. The AMPR performs a 90º cross-track data scan perpendicular to the direction of aircraft motion. It processes a linear polarization feed with full vertical polarization at -45º and full horizontal polarization at +45º, with the polarization across the scan mixed as a function of sin2, giving an equal V-H mixture at 0º (aircraft nadir). A full calibration is made every fifth scan using hot and cold blackbodies. From a typical ER-2 flight altitude of ~20 km, surface footprint sizes range from 640 m (85.5 GHz) to 2.8 km (10.7 GHz). All four channels share a common measurement grid with collocated footprint centers, resulting in over-sampling of the low frequency channels with respect to 85.5 GHz.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - CAMP2Ex