Organization
Harvard University
First Author Publications
-
Wofsy, S.C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Wofsy, S.C. (2018), ATom: Aircraft Flight Track and Navigational Data, Ornl Daac, doi:10.3334/ORNLDAAC/1613.
-
Wofsy, S.C., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
-
Wofsy, S.C., et al. (1994), Vertical Transport Rates in 1993 From Observations of CO2, N2O and Ch4, Geophys. Res. Lett., 21, 2571-2574.
-
Wofsy, S.C., et al. (1994), Factors influencing composition over subarctic North America during summer, J. Geophys. Res., 99, 1887-1897.
-
Wofsy, S.C., et al. (1993), Atmospheric Chemistry in the Arctic and Subarctic: The Influence of Natural Fires, Industrial Emissions, and Stratospheric Inputs, J. Geophys. Res., 98, 16,731-16.
-
Wofsy, S.C., et al. (1991), Factors Regulating Atmospheric Chemistry in the Arctic and Subarctic: Natural Fires, Midlatitude Industrial Sources, and Stratospheric Inputs, J. Geophys. Res., In press.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles.
-
Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles, 37, e2023GB007804, doi:10.1029/2023GB007804.
-
Gordon, A., et al. (2024), Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes, Atmos. Chem. Phys., doi:10.5194/acp-24-7591-2024.
-
Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
-
Katich, J., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.
-
Krysztofiak, G., et al. (2023), N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018, Atmosphere, 14, 585, doi:10.3390/atmos14030585.
-
Bourgeois, I., et al. (2022), Large contribution of biomass burning emissions to ozone throughout the global remote troposphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109628118.
-
Hu, L., et al. (2022), Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017, Atmos. Chem. Phys., doi:10.5194/acp-22-2891-2022.
-
zhang, X., et al. (2022), Probing isoprene photochemistry at atmospherically relevant nitric oxide levels, Chem, 8, 2022, doi:10.1016/j.chempr.2022.08.003.
-
Bates, K.H., et al. (2021), The Global Budget of Atmospheric Methanol: New Constraints on Secondary, Oceanic, and Terrestrial Sources, J. Geophys. Res., 126, doi:10.1029/2020JD033439.
-
Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
-
Gonzalez, Y.G., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
-
Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
-
Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
-
Kulawik, S., et al. (2021), Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements, Atmos. Meas. Tech., 14, 335-354, doi:10.5194/amt-14-335-2021.
-
Liu, J., et al. (2021), Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299-330, doi:10.5194/essd-13-299-2021.
-
Long, M.C., et al. (2021), Strong Southern Ocean carbon uptake evident in airborne observations, Science, 374, 1275-1280.
-
Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
-
Birner, B., et al. (2020), Gravitational separation of Ar/N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model, Atmos. Chem. Phys., doi:10.5194/acp-2020-95.
-
Bourgeois, I., et al. (2020), Global-scale distribution of ozone in the remote troposphere from ATom and HIPPO airborne field missions., Atmos. Chem. Phys., doi:10.5194/acp-2020-315.
-
Brewer, J., et al. (2020), Evidence for an Oceanic Source of Methyl Ethyl Ketone to the Atmosphere, J. Geophys. Res., 60273, Article, doi:10.1029/2019GL086045.
-
Commane, R., et al. (2020), ATom: Measurements from the Quantum Cascade Laser System (QCLS), Ornl Daac, doi:10.3334/ORNLDAAC/1747.
-
Martínez-Alonso, S., et al. (2020), 1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom, Atmos. Meas. Tech., 13, 4841-4864, doi:10.5194/amt-13-4841-2020.
-
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
-
Gaubert, B., et al. (2019), Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate, Biogeosciences, 16, 117-134, doi:10.5194/bg-16-117-2019.
-
Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
-
Strode, S., et al. (2018), ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1, Ornl Daac, doi:10.3334/ORNLDAAC/1604.
-
Strode, S., et al. (2018), Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling, Atmos. Chem. Phys., 18, 10955-10971, doi:10.5194/acp-18-10955-2018.
-
Sun, K., et al. (2018), Reevaluating the Use of O2 a1 Δg Band in Spaceborne Remote Sensing of Greenhouse Gases, Geophys. Res. Lett., 45, 5779-5787, doi:10.1029/2018GL077823.
-
Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
-
Luus, K.A., et al. (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
-
Prather, M., et al. (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, doi:10.5194/acp-17-9081-2017.
-
Chen, J., et al. (2016), Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479-8498, doi:10.5194/acp-16-8479-2016.
-
Miller, S.M., et al. (2016), A multi-year estimate of methane fluxes in Alaska form CARVE atmospheric observations, Global Biogeochem. Cycles, 30, 1441-1453, doi:10.1002/2016GB005419.
-
Alvarado, M.J., et al. (2015), Impacts of updated spectroscopy on thermal infrared retrievals of methane evaluated with HIPPO data, Atmos. Meas. Tech., 8, 965-985, doi:10.5194/amt-8-965-2015.
-
McKain, K., et al. (2015), Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, Proc. Natl. Acad. Sci., 112, 1941-1946, doi:10.1073/pnas.1416261112.
-
Deng, F., et al. (2014), Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703-3727, doi:10.5194/acp-14-3703-2014.
-
Keppel-Aleks, G., et al. (2013), Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries, J. Climate, 26, 4447-4475, doi:10.1175/JCLI-D-12-00589.1.
-
Kuai, L., et al. (2013), Profiling tropospheric CO2 using Aura TES and TCCON instruments, Atmos. Meas. Tech., 6, 63-79.
-
Kulawik, S., et al. (2013), Comparison of improved Aura Tropospheric Emission Spectrometer CO2 with HIPPO and SGP aircraft profile measurements, Atmos. Chem. Phys., 13, 3205-3225.
-
Ryerson, T.B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
-
Keppel-Aleks, G., et al. (2012), The imprint of surface fluxes and transport on variations in total column carbon dioxide, Biogeosciences, 9, 875-891, doi:10.5194/bg-9-875-2012.
-
Wecht, K.J., et al. (2012), Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources, Atmos. Chem. Phys., 12, 1823-1832, doi:10.5194/acp-12-1823-2012.
-
Wennberg, P., et al. (2012), On the Sources of Methane to the Los Angeles Atmosphere, Environ. Sci. Technol., 46, 9282-9289, doi:10.1021/es301138y.
-
Chevallier, F., et al. (2011), Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column, Geophys. Res. Lett., 38, L24810, doi:10.1029/2011GL049899.
-
Park, S., et al. (2010), Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species, Atmos. Chem. Phys., 10, 6669-6684, doi:10.5194/acp-10-6669-2010.
-
Schwarz, J., et al. (2010), Global‐scale black carbon profiles observed in the remote atmosphere and compared to models, Geophys. Res. Lett., 37, L18812, doi:10.1029/2010GL044372.
-
Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
-
Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351-1362, doi:10.5194/amt-3-1351-2010.
-
Miller, S., et al. (2008), Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data, Atmos. Chem. Phys., 8, 7673-7696, doi:10.5194/acp-8-7673-2008.
-
Marcy, T., et al. (2007), Measurements of trace gases in the tropical tropopause layer, Atmos. Environ., 41, 7253-7261, doi:10.1016/j.atmosenv.2007.05.032.
-
Miller, C.E., et al. (2007), Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.
-
Park, S., et al. (2007), The CO2 tracer clock for the Tropical Tropopause Layer, Atmos. Chem. Phys., 7, 3989-4000, doi:10.5194/acp-7-3989-2007.
-
Pittman, J.V., et al. (2007), Transport in the subtropical lowermost stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment, J. Geophys. Res., 112, D08304, doi:10.1029/2006JD007851.
-
Weinstock, E., et al. (2007), Quantifying the impact of the North American monsoon and deep midlatitude convection on the subtropical lowermost stratosphere using in situ measurements, J. Geophys. Res., 112, D18310, doi:10.1029/2007JD008554.
-
Heinsch, F.A., et al. (2006), Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations, IEEE Trans. Geosci. Remote Sens., 44, 1908-1925, doi:10.1109/TGRS.2005.853936.
-
Jiménez, R., et al. (2005), A new quantum-cascade laser based spectrometer for high-precision airborne CO2 measurements, Presentation at the 13th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques Boulder, Colorado, USA; September 19-22.
-
Crisp, D., et al. (2004), The Orbiting Carbon Observatory (OCO) mission, Advances in Space Research, 34, 700-709, doi:10.1016/j.asr.2003.08.062.
-
Gao, R., et al. (2004), Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303, 516-520, doi:10.1126/science.1091255.
-
Ray, E., et al. (2004), Evidence of the effect of summertime midlatitude convection on the subtropical lower stratosphere from CRYSTAL-FACE tracer measurements, J. Geophys. Res., 109, D18304, doi:10.1029/2004JD004655.
-
Xueref, I., et al. (2004), Combining a receptor-oriented framework for tracer distributions with a cloud-resolving model to study transport in deep convective clouds: Application to the NASA CRYSTAL-FACE campaign, Geophys. Res. Lett., 31, L14106, doi:10.1029/2004GL019811.
-
Jost, H., et al. (2002), Mixing events revealed by anomalous tracer relationships in the Arctic vortex during winter 1999/2000, J. Geophys, Res., 107, 4795, doi:10.1029/2002JD002380.
-
Amthor, J.S., et al. (2001), Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Inter-model comparisons and relations to field measurements, J. Geophys. Res., 106, 33,623-.
-
Andrews, A.E., et al. (2001), Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical "barrier" to horizontal transport, J. Geophys. Res., 106, 10257-10274.
-
Andrews, A.E., et al. (2001), Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32.
-
Boering, K.A., et al. (1996), Stratospheric mean ages and transport rates from observations of carbon-dioxide and nitrous-oxide, Science, 274, 1340-1343.
-
Fahey, D., et al. (1995), In situ observations of aircraft exhaust in the lower stratosphere at midlatitudes, J. Geophys. Res., 3065-3074 (manuscript in preparation).
-
Boering, K.A., et al. (1994), Tracer-tracer Relationships and Lower Stratosphere Dynamics: CO2 and N2O Correlations During SPADE, Geophys. Res. Lett., 21, 2567-2570.
-
Jaeglé, L., et al. (1994), In Situ Measurements of the NO2/NO Ratio For Testing Atmospheric Photochemical Models, Geophys. Res. Lett., 21, 2555-2558.
-
Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
-
Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
-
Singh, H., et al. (1994), Summertime Distribution of PAN and Other Reactive Nitrogen Species in The Northern High Latitude Atmosphere of Eastern Canada, J. Geophys. Res., 99, 1821-1835.
-
Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
-
Fahey, D., et al. (1993), In Situ Measurements Constraining the Role of Sulphate Aerosols in Mid-Latitude Ozone Depletion, Nature, 363, 509-514.
-
Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
-
Jacob, D.J., et al. (1992), Summertime Photochemistry in the Arctic Troposphere, J. Geophys. Res., 97, 16421-16432.
-
Singh, H., et al. (1992), Reactive nitrogen in the northern high latitude atmosphere of eastern Canada, J. Geophys. Res., In press.
-
Harriss, R.C., et al. (1991), The Amazon Boundary Layer Experiment (ABLE 2B): West Season 1987, J. Geophys. Res., D10, 16,721-16.
-
Salawitch, R., et al. (1990), Loss of Ozone in the Polar Vortex for the Winter of 1989, Geophys. Res. Lett., 17, 561-164.
-
Yatteau, J.H., et al. (1990), Newman, A. Torres, T. Jorgensen, W. G. Mankin, M. T. Coffey, G. C. Toon, M. Loewenstein, J. R. Podolske, S. E. Strahan, K. R. Chan, and M. H. Proffitt, Geophys. Res. Lett., 17, 533-536.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.