The partitioning between solid and aqueous phases of tropospheric sulfate-ammonium particles is simulated with a global 3-D chemical transport model (CTM). The simulation explicitly accounts for the hysteresis of particle phase transitions by transporting aqueous sulfate and three solid sulfate forms (namely, ammonium sulfate, letovicite, and ammonium bisulfate). Composition-dependent deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) are based on recent laboratory data. We find that the solids mass fraction on a sulfate basis is 0.34, partitioned as 93% ammonium sulfate, 6% letovicite, and 1% ammonium bisulfate. The fraction increases with altitude from 0.10 to 0.30 in the boundary layer to 0.60–0.80 in the upper troposphere. The dominance of solids in the upper troposphere arises in part from high sulfate neutralization, reflecting in our simulation a low retention efficiency of NH3 upon cloud freezing. High sulfate neutralization is consistent with the few available observations in the upper troposphere. High acidity with a dominant aqueous phase, however, can occur following volcanic eruptions. Seasonal variation of the solids mass fraction in both the lower and upper troposphere is modulated by emissions of NH3 from the terrestrial biosphere and biomass burning as well as by emissions of dimethylsulfide from the ocean biosphere. The timescale of phase transitions, as driven by changes in relative humidity, varies from 10 to 50 h in the boundary layer to 150–400 h in the upper troposphere. Omission of the hysteresis effect in the CTM by assuming that particle phase follows the lower side of the hysteresis loop increases the solids mass fraction from 0.34 to 0.56. An upper side assumption decreases the fraction to 0.17. Lower and upper side assumptions better approximate particle phase for high and low altitudes, respectively. Fluctuations in the CRH, which can be induced by other constituents in sulfate particles such as minerals or organic molecules, strongly affect the solids mass fraction in the boundary layer but not at higher altitudes. Further studies are needed to determine the effects of large solids mass fraction on heterogeneous chemistry and cirrus cloud formation.
Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions
Wang, J., A.A. Hoffmann, R.J. Park, D.J. Jacob, and S. Martin (2008), Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions, J. Geophys. Res., 113, D11206, doi:10.1029/2007JD009367.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Radiation Science Program (RSP)
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.