Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


The EMIT mission information yield for mineral dust radiative forcing

Connelly, D. S., D. Thompson, N. Mahowald, L. Li, N. Carmon, G. Okin, R. O. Green, et al. (2021), The EMIT mission information yield for mineral dust radiative forcing, Remote Sensing of Environment, 258, 112380, doi:10.1016/j.rse.2021.112380.

The net direct radiative effect of mineral dust is a large uncertainty in global radiative forcing. To address this challenge, NASA’s Earth Mineral dust source InvesTigation (EMIT) will map the surface mineralogy of Earth’s desert dust source regions, constraining the composition of mineral dust aerosol for use in Earth system models (ESMs). This mission foreshadows multiple future global spectroscopic investigations for which coupling with ESMs will play a critical role. Planning such experiments requires a methodology for assessing the impact of uncertain remote observations on ESM accuracy. We design and implement an end-to-end simulation of the EMIT mission, leveraging Bayesian statistical methods and Monte Carlo sampling to analyze uncertainties in the retrieval and processing of EMIT data products. Special focus is placed on those uncertainties caused by atmo­ spheric water vapor and aerosol loading conditions likely to be encountered by EMIT. We apply these results to a single-column configuration of the Community Earth System Model (CESM), revealing the potential impact of EMIT observations on radiative forcing estimates. We show that EMIT data stand to significantly reduce un­ certainty in estimates of the dust direct radiative forcing attributable to uncertainties in surface mineralogies that are input to ESMs, and that the information gain for radiative forcing comes predominantly from better con­ straining iron oxides, which dominate the shortwave radiative effects of aerosol dust.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Earth Surface & Interior Program (ESI)
Earth Ventures-Instrument (EVI-4) Mission: EMIT
Funding Sources: 
Earth Ventures-Instrument (EVI-4) Mission