Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial...

Perring, A., J. Schwarz, R. Gao, A. Heymsfield, C. Schmitt, M. Schnaiter, and D. Fahey (2013), Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol, Aerosol Sci. Tech., 47, 1066-1072, doi:10.1080/02786826.2013.821196.
Abstract: 

Eggenstein-Leopoldshafen, Germany

The majority of airborne aerosol measurements employ forward-facing inlets with near-isokinetic sampling; these inlets have known artifacts when sampling in clouds such that data taken in cloud must typically be discarded. Here we report first results from a perpendicular inlet for sampling interstitial submicron black-carbon (BC) containing aerosol. The inlet, consisting of a flat plate to stabilize flow prior to perpendicular sampling, was evaluated using a single particle soot photometer (SP2) aboard the NASA WB-57F aircraft during the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) of 2011. The new inlet rejects large particles and is free of aerosol artifacts when sampling in ice clouds while allowing sampling of submicron BC-containing aerosol with the same unit efficiency as a validated isokinetic inlet, thus allowing for airborne sampling of interstitial BC aerosol.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Upper Atmosphere Research Program (UARP)
Mission: 
MACPEX