Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Diagnosing climate feedbacks in coupled ocean-atmosphere models

Chung, E., B. Soden, and A. Clement (2012), Diagnosing climate feedbacks in coupled ocean-atmosphere models, Surv. Geophys., 733-744, doi:10.1007/s10712-012-9187-x.
Abstract: 

We review the methodologies used to quantify climate feedbacks in coupled models. The method of radiative kernels is outlined and used to illustrate the dependence of lapse rate, water vapor, surface albedo, and cloud feedbacks on (1) the length of the time average used to define two projected climate states and (2) the time separation between the two climate states. Except for the shortwave component of water vapor feedback, all feedback processes exhibit significant high-frequency variations and intermodel variability of feedback strengths for sub-decadal time averages. It is also found that the uncertainty of lapse rate, water vapor, and cloud feedback decreases with the increase in the time separation. The results suggest that one can substantially reduce the uncertainty of cloud and other feedbacks with the accumulation of accurate, long-term records of satellite observations; however, several decades may be required.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
CLARREO