Warning message

Member access has been temporarily disabled. Please try again later.
The AVE-Houston2 website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals

Weisz, E., J. Li, P. Menzel, Andrew Heidinger, B. Kahn, and C. Liu (2007), Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals, Geophys. Res. Lett., 34, L17811, doi:10.1029/2007GL030676.
Abstract: 

Knowledge of cloud properties like cloud top height (CTH) is essential to understand their impact on the earth’s radiation budget and on climate change. High spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) are well suited to reveal valuable information about cloud altitude. The CTH retrievals derived from AIRS single field-of-view (FOV) radiance measurements are compared with the operational MODIS (Moderate Resolution Imaging Spectroradiometer) cloud product, and Level 2 products obtained from radar and lidar instruments onboard the EOS (Earth Observing System) CloudSat and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellites. Two cases containing a variety of cloud conditions have been studied, and the strengths/shortcomings of CTH products from infrared (IR) sounder radiances are discussed.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)