Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for...

The core information for this publication's citation.: 
Strode, S., J. Liu, L. R. Lait, R. Commane, B. Daube, S. C. Wofsy, A. Conaty, P. Newman, and M. Prather (2018), ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1, Ornl Daac, doi:10.3334/ORNLDAAC/1604.
Abstract: 

This dataset contains carbon monoxide (CO) observations at 10-second intervals from flights during the ATom-1 campaign in 2016 and simulated CO concentrations from the Goddard Earth Observing System version 5 (GEOS-5) model for the corresponding locations along the ATom flight tracks. The Atmospheric Tomography Mission (ATom) is a NASA Earth Venture Suborbital-2 mission studying the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere. The airborne observations were collected using the Quantum Cascade Laser System (QCLS) instrument, a high-frequency laser spectroscopy instrument for in situ atmospheric gas sampling. This dataset provides a direct comparison of observational and simulated CO that will be used to inform future atmospheric modeling experiments. The dataset also contains simulated tagged-CO tracer concentrations, which represent the contribution of specific regional sources to the total simulated CO. This dataset contributes to one of the ATom mission objectives to create an observation-based chemical climatology of important atmospheric constituents and their reactivity in the remote troposphere.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Tropospheric Composition Program (TCP)
Mission: 
ATom