Primary tabs

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Impact of ocean carbon system variability on the detection of temporal...

Levine, N. M., S. C. Doney, R. Wanninkhof, K. Lindsay, and I. Fung (2008), Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2, J. Geophys. Res., 113, C03019, doi:10.1029/2007JC004153.
Abstract: 

Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the DC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Carbon Cycle & Ecosystems Program (CCEP)