Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Associated content: 

Airborne Third Generation Precipitation Radar

The APR-3 is a three frequency (13, 35, and 94 GHz), Doppler, dual-polarization radar system. It has a downward looking antenna that performs cross track scans, covering a swath that is +/- 25 to each side of the aircraft path. Additional features include: simultaneous dual-frequency, matched beam operation, simultaneous measurement of both like- and cross-polarized signals at both frequencies, Doppler operation, and real-time pulse compression (calibrated reflectivity data can be produced for large areas in the field during flight, if necessary).

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

High Spectral Resolution Lidar 2

The NASA Langley airborne High Spectral Resolution Lidar 2 (HSRL) is used to characterize clouds and small particles in the atmosphere, called aerosols. From an airborne platform, the HSRL2 scientist team studies aerosol size, composition, distribution and movement.
 

Instrument Type: 
Point(s) of Contact: 

Advanced Vertical Atmospheric Profiling System

The Advanced Vertical Atmospheric Profiling System (AVAPS) is the dropsonde system for the Global Hawk. The Global Hawk dropsonde is a miniaturized version of standard RD-93 dropsondes based largely on recent MIST driftsondes deployed from balloons. The dropsonde provides vertical profiles of pressure, temperature, humidity, and winds. Data from these sondes are transmitted in near real-time via Iridium or Ku-band satellite to the ground-station, where additional processing will be performed for transmission of the data via the Global Telecommunications System (GTS) for research and operational use. The dispenser is located in zone 61 in the Global Hawk tail and is capable of releasing up to 88 sondes in a single flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Research Scanning Polarimeter

In order to demonstrate the capabilities of polarimetry an instrument that can make either ground-based, or aircraft measurements, the Research Scanning Polarimeter (RSP) has been developed by SpecTIR Corporation. This instrument has similar functional capabilities to the proposed EOSP satellite instrument. The picture above shows the assembled RSP instrument with its liquid nitrogen dewar on the left side and scanner assembly on the right. Currently data acquisition is performed on a laptop, which is shown here and gives an indication of the size of the instrument. The scientific requirements for the polarimetric measurements are satisfied by the RSP through its high measurement accuracy, the wide range of viewing angles measured and by sampling of the spectrum of reflected solar radiation over most of the radiatively significant range. The RSP instrument uses a polarization compensated scan mirror assembly to scan the fields of view of six boresighted, refractive telescopes through ±60° from the normal with respect to the instrument baseplate. The refractive telescopes are paired, with each pair making measurements in three spectral bands. One telescope in each pair makes simultaneous measurements of the linear polarization components of the intensity in orthogonal planes at 0° and 90° to the meridional plane of the instrument, while the other telescope simultaneously measures equivalent intensities in orthogonal planes at 45° and 135°. This approach ensures that the polarization signal is not contaminated by uncorrelated spatial or temporal scene intensity variations during the course of the polarization measurements, which could create false polarization. These measurements in each instantaneous field of view in a scan provide the simultaneous determination of the intensity, and the degree and azimuth of linear polarization in all nine spectral bands.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe

The DASH-SP providse rapid measurements of size-resolved aerosol sub-saturated hygroscopic growth factors and the real part of aerosol refractive index. It has been deployed aboard the NASA DC-8 during the DC3 and SEAC4RS field campaigns.

Measurements: 
Point(s) of Contact: 

Langley Aerosol Research Group Experiment

Langley Aerosol Research Group Experiment (LARGE).  The "classic" suite of instrumenation measures in-situ aerosol micrphysical and optical properties. The package can be tailored for specific science objectives and to operate on a variety of aircraft. Depending on the aircraft, measurments are made from either a shrouded single-diffuser "Clarke" inlet, from a BMI (Brechtel Manufacturing Inc.) isokinetic inlet, or from a HIML inlet. Primary measurements include:

1.) total and non-volatile particle concentrations (3nm and 10nm nominal size cuts),
2.) dry size distributions from 3nm to 5µm diameter using a combination of mobilty-optical-aerodynamic sizing techniques,
3.) dry and humidified scattering coefficients (at 450, 550, and 700nm wavelength), and
4.) dry absorption coefficients (470, 532, and 670nm wavelength). 

LARGE derived products include particle size statistics (integrated number, surface area, and volume concentrations for ultrafine, accumulation, and coarse modes), dry and ambient aerosol extinction coefficients, single scattering albedo, angstrom exponent coefficients, and scattering hygroscopicity parameter f(RH).

Aircraft: 
DC-8 - AFRC, C-130H - WFF, P-3 Orion - WFF, HU-25 Falcon - LaRC, King Air B-200 - LaRC
Point(s) of Contact: 

Langley Wideband Integrated Bioaerosol Sensor

Wideband Integrated Bioaerosol Sensor (WIBS-4A) - Droplet Measurement Technologies.  Dectection of Fluorescent Biological Aerosol Particle (FBAP) number concentrations.  Single particle analysis using dual wavelength (280nm and 370nm by xenon lamps) excitation on two parallel broadband visible-wavelength detectors (310-400nm and 420-650nm). Particles are classified by a combination of fluorescence excitation and emission characteristics, as well as their optical size measured by forward-scattering using a 635nm continuous-wave diode laser.    

Instrument Type: 
Point(s) of Contact: 

Langley Single Particle Soot Photometer

Droplet Measurement Technologies (DMT) Single Particle Soot Photometer (SP2). Signle particle measurement of accumulation-mode refractory black carbon (rBC) mass concentrations based on laser-induced incancescence.   

Instrument Type: 
Point(s) of Contact: 

Solar Spectral Flux Radiometer

In early 2000, the Ames Atmospheric Radiation Group completed the design and development of an all new Solar Spectral Flux Radiometer (SSFR). The SSFR is used to measure solar spectral irradiance at moderate resolution to determine the radiative effect of clouds, aerosols, and gases on climate, and also to infer the physical properties of aerosols and clouds. Additionally, the SSFR was used to acquire water vapor spectra using the Ames 25-meter base-path multiple-reflection absorption cell in a laboratory experiment. The Solar Spectral Flux Radiometer is a moderate resolution flux (irradiance) spectrometer with 8-12 nm spectral resolution, simultaneous zenith and nadir viewing. It has a radiometric accuracy of 3% and a precision of 0.5%. The instrument is calibrated before and after every experiment, using a NIST-traceable lamp. During field experiments, the stability of the calibration is monitored before and after each flight using portable field calibrators. Each SSFR consists of 2 light collectors, which are either fix-mounted to the aircraft fuselage, or on a stabilizing platform which counteracts the movements of the aircraft. Through fiber optic cables, the light collectors are connected to 2 identical pairs of spectrometers, which cover the wavelength range from (a) 350 nm-1000 nm (Zeiss grating spectrometer with Silicon linear diode array) and (b) 950 nm - 2150 nm (Zeiss grating spectrometer with InGaAs linear diode array). Each spectrometer pair covers about 95% of the incoming solar incident irradiance spectrum.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Cloud Particle Imager

The CPI records high-resolution (2.3 micron pixel size) digital images of particles that pass through the sample volume at speeds up to 200 m/s. In older models, CCD camera flashes up to 75 frames per second (fps), potentially imaging more than 25 particles per frame. More recent camera upgrades capable of bringing frame rate to nearly 500 fps. Real time image processing crops particle images from the full frame, eliminating blank space and compressing data by >1000:1. CPI is designed for ummanned use, with AI parameters to optimize performance without supervision.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - CAMP2Ex