Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


The validation of the GEWEX SRB surface shortwave flux data products using BSRN...

Zhang, T., P. Stackhouse, S. K. Gupta, S. J. Cox, J. C. Mikovitz, and L. Hinkelman (2013), The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach, J. Quant. Spectrosc. Radiat. Transfer, 122, 127-140, doi:10.1016/j.jqsrt.2012.10.004.

The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth’s surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude × 11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3 W1 m -2 under all-sky conditions.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)