Warning message

Member access has been temporarily disabled. Please try again later.
The ATTREX website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Recent anthropogenic increases in SO2 from Asia have minimal impact on...

Neely, R. R., B. Toon, S. Solomon, J. Jean-Paul, C. Alvarez, J. M. English, K. Rosenlof, M. J. Mills, C. Bardeen, J. S. Daniel, and J. Thayer (2013), Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol, Geophys. Res. Lett., 40, 999-1004, doi:10.1002/grl.50263.
Abstract: 

Observations suggest that the optical depth of the stratospheric aerosol layer between 20 and 30 km has increased 4–10% per year since 2000, which is significant for Earth’s climate. Contributions to this increase both from moderate volcanic eruptions and from enhanced coal burning in Asia have been suggested. Current observations are insufficient to attribute the contribution of the different sources. Here we use a global climate model coupled to an aerosol microphysical model to partition the contribution of each. We employ model runs that include the increases in anthropogenic sulfur dioxide (SO2 ) over Asia and the moderate volcanic explosive injections of SO2 observed from 2000 to 2010. Comparison of the model results to observations reveals that moderate volcanic eruptions, rather than anthropogenic influences, are the primary source of the observed increases in stratospheric aerosol.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)