Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Identify the limits of geometric optics ray tracing by numerically solving the...

Ding, J., P. Yang, M. Mishchenko, and R. D. Nevels (2020), Identify the limits of geometric optics ray tracing by numerically solving the vector Kirchhoff integral, Optics Express, 28, 10670-10682, doi:10.1364/OE.389097.

The properties of a pencil of light as defined approximately in the geometric optics ray tracing method are investigated. The vector Kirchhoff integral is utilized to accurately compute the electromagnetic near field in and around the pencil of light with various beam base sizes, shapes, propagation directions and medium refractive indices. If a pencil of light has geometric mean cross section size of the order p times the wavelength, it can propagate independently to a distance p2 times the wavelength, where most of the beam energy diffuses out of the beam region. This is consistent with a statement that van de Hulst made in a classical text on light scattering. The electromagnetic near fields in the pencil of light are not uniform, have complicated patterns within short distances from the beam base, and the fields tend to converge to Fraunhofer diffraction fields far away from the base.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)