Warning message

Member access has been temporarily disabled. Please try again later.
The ATTREX website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Critical evaluation of the MODIS Deep Blue aerosol optical depth product for...

Shi, Y., J. Zhang, J. Reid, E. Hyer, and N. C. Hsu (2013), Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa, Atmos. Meas. Tech., 6, 949-969, doi:10.5194/amt-6-949-2013.
Abstract: 

Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) collection 5.1 (c5.1) aerosol optical depth (AOD) data were analyzed and evaluated for the first time from an independent research group using eight years of Terra (2000–2007) and Aqua (2002–2009). Uncertainties in the DB AOD were identified and studied, and our results show that the performance of DB c5.1 is strongly dependent on surface albedo and aerosol microphysics. Using data with only “very good” quality assurance, the rootmean-square error (RMSE) of the DB Terra (Aqua) AOD is 0.24 (0.19) when validated against AERONET. Expanding upon the uncertainty analysis, the potential of applying the DB products for aerosol assimilation was explored. Empirical corrections and quality assurance procedures were developed for North Africa and the Arabian Peninsula to create a data assimilation (DA)-quality DB product. After applying those procedures, the RMSE is reduced by 18.1 % (18.2 %) for Terra (Aqua) DB data. Prognostic error models of 0.069 + 0.175 × AODTerra DB with no noise floor and 0.048 + 0.182 × AODAqua DB with a noise floor of 0.104 were found for DA-quality Terra and Aqua DB data, respectively. These procedures were also applied to two months of DB collection 6 (c6) AOD data, and reductions in RMSE were found, indicating that the algorithms developed for c5.1 data are applicable to c6 data to some extent.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)