Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
The Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite was successfully launched in April 2006 to study cloud and aerosol layers using range-resolved laser remote sensing. Dedicated flights were conducted from July 26 to August 14, 2006 using the airborne Cloud Physics Lidar (CPL) to validate the CALIPSO lidar (CALIOP) data products. This paper presents results from coincident ice cloud measurements of lidar ratio, extinction coefficient, and optical depth. Flight segment case studies are shown as well as statistics for all coincident measurements during this CALIPSO-CloudSat Validation Experiment (CC-VEX). For the penetrated portion of opaque layers, CALIOP estimates of lidar ratio and extinction are substantially lower than the corresponding CPL values. Significant differences were also found for measurements of horizontally aligned ice, where different instrument viewing geometries precluded meaningful comparisons. After filtering the data set to exclude these discrepancies, overall CALIOP lidar ratio and extinction averages compared favorably to within 1% of overall CPL averages. When restricting the data further to exact coincident in-cloud point-pairs, CALIOP lidar ratios remained close to CPL values, averaging 2.1% below CPL, and the retrieved extinction and optical depth averaged 14.7% above CPL values, a result partially of higher average CALIOP attenuated backscatter but still a respectably close match.