Varon, D.J., et al. (2018), Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes, Atmos. Meas. Tech., 11, 5673-5686, doi:10.5194/amt-11-5673-2018.
CMS
Zhang, Y., et al. (2018), Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane, Atmos. Chem. Phys., 18, 15959-15973, doi:10.5194/acp-18-15959-2018.
Cusworth, D.H., et al. (2018), Detecting high-emitting methane sources in oil/gas fields using satellite observations, Atmos. Chem. Phys., 18, 16885-16896, doi:10.5194/acp-18-16885-2018.
Gately, C.K., et al. (2017), Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data*, Environmental Pollution, 229, 496-504, doi:10.1016/j.envpol.2017.05.091.
Reinmann, A.B., and L.R. Hutyra (2017), Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests, Proc. Natl. Acad. Sci., 114, 107-112, doi:10.1073/pnas.1612369114.
Hardiman, B.S., et al. (2017), Accounting for urban biogenic fluxes in regional carbon budgets, Science of The Total Environment., 592, 366-372, doi:10.1016/j.scitotenv.2017.03.028.
Decina, S.M., et al. (2016), Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area, Environmental Pollution., 212, 433-439, doi:10.1016/j.envpol.2016.01.012.
Chen, J., et al. (2016), Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479-8498, doi:10.5194/acp-16-8479-2016.
Gurney, K., et al. (2015), Track urban emissions on a human scale, Nature, 525, 179-181, doi:10.1038/525179a.
Gately, C.K., et al. (2015), Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships, Proc. Natl. Acad. Sci., 112, 4999-5004, doi:10.1073/pnas.1421723112.