Organization
University of Colorado, Boulder
Email
Business Phone
Work
(720) 320-4053
Mobile
(720) 320-4053
Business Address
University of Colorado - INSTAAR
4001 Discovery Dr Room N202
Boulder, CO 80303
United States
Co-Authored Publications
-
Cuchiara, G.C., et al. (2023), Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC 4RS Case Study, J. Geophys. Res..
-
Brune, W.H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
-
Liu, S., et al. (2022), Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California, Atmos. Chem. Phys., 22, 10937-10954, doi:10.5194/acp-22-10937-2022.
-
Wolfe, G.M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
-
Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Nault, B.A., et al. (2021), Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality, Atmos. Chem. Phys., 21, 11201-11224, doi:10.5194/acp-21-11201-2021.
-
Cuchiara, G.C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
-
Schroeder, J.R., et al. (2020), Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elem Sci Anth, 8, doi:10.1525/elementa.400.
-
Barkley, Z.R., et al. (2019), Estimating Methane Emissions From Underground Coal and Natural Gas Production in Southwestern Pennsylvania, Geophys. Res. Lett., 46, doi:10.1029/2019GL082131.
-
Chen, X., et al. (2019), On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America, Atmos. Chem. Phys., 19, 9097-9123, doi:10.5194/acp-19-9097-2019.
-
Nowlan, C., et al. (2018), Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941-5964, doi:10.5194/amt-11-5941-2018.
-
Müller, M., et al. (2016), In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys., 16, 3813-3824, doi:10.5194/acp-16-3813-2016.
-
Pusede, S.E., et al. (2016), On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol, Atmos. Chem. Phys., 16, 2575-2596, doi:10.5194/acp-16-2575-2016.
-
Barth, M.C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
-
Olson, J.R., et al. (2012), An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos. Chem. Phys., 12, 6799-6825, doi:10.5194/acp-12-6799-2012.
-
Hornbrook, R.S., et al. (2011), Observations of nonmethane organic compounds during ARCTAS – Part 1: Biomass burning emissions and plume enhancements, Atmos. Chem. Phys., 11, 11103-11130, doi:10.5194/acp-11-11103-2011.
-
Fried, A., et al. (2008), Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement-model comparisons, J. Geophys. Res., 113, D10302, doi:10.1029/2007JD009185.
-
Snow, J.A., et al. (2007), Hydrogen peroxide, methyl hydroperoxide, and formaldehyde over North America and the North Atlantic, J. Geophys. Res., 112, D12S07, doi:10.1029/2006JD007746.
-
Weibring, K.P.A., et al. (2007), First Demonstration of a High Performance Difference Frequency Spectrometer on Airborne Platforms, Optics Express, 15, 13476-13495.
-
Weibring, K.P.A., et al. (2006), Ultra-High-Precision Mid-IR Spectrometer II: System Description and Spectroscopic Performance, Appl. Phys. B, doi:10.1007/s00340-006-2300-4.
-
Singh, H.B., et al. (2004), Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals (OVOC) based on measurements over the Pacific during TRACE-P, J. Geophys. Res., 109, doi:10.1029/2003JD003883.
-
Cantrell, C., et al. (2003), Steady state free radical budgets and ozone photochemistry during TOPSE, J. Geophys. Res., 108, 8361, doi:10.1029/2002JD002198.
-
Eisele, F., et al. (2003), Summary of measurement intercomparisons during TRACE-P, J. Geophys. Res., 108, 8791, doi:10.1029/2002JD003167.
-
Fried, A., et al. (2003), Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons, J. Geophys. Res., 108, 8798, doi:10.1029/2003JD003451.
-
Neuman, J.A., et al. (2001), In situ measurements of HNO3, NOy, NO, and O3 in the lower stratosphere and upper troposphere, Atmos. Environ., 35, 5789-5797.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.